Skip to main content

A Test Calculation on SF6 of Model Potentials for Correlation and Polarization Effects in Positron Scattering from Molecules

  • Chapter
New Directions in Antimatter Chemistry and Physics

Abstract

Model local potentials that have been used to describe the correlation and polarization interactions in positron-molecule scattering are compared. Model density functional correlation-polarization potentials developed for electron-molecule and positron-molecule scattering are considered in addition to the distributed positron model. Results computed using these potentials are compared to available experimental data for positron-SF6 scattering. It is found that the distributed positron model gives very good agreement with experimental data in contrast to the poor agreement found with the positron-molecule correlation-polarization potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. J. Ache, ed., Positronium and Muonium Chemistry (Am. Chem. Soc., Washington D.C., 1979).

    Google Scholar 

  2. A. Passner, C. M. Surko, M. Leventhal and A. P. Mills Jr., Phys. Rev. A 39, 3706 (1989).

    Article  ADS  Google Scholar 

  3. P. Coleman, ed., Positron Beams and Their Applications (World Scientific, Singapore, 2000).

    Google Scholar 

  4. G. L. Brownell, T. F. Budinger, P. C. Lauterbur, and P. L. McGeer, Science 215, 619 (1982).

    Article  ADS  Google Scholar 

  5. M. S. Dababneh, Y.-F. Hsieh, W. E. Kauppila, C. K. Kwan, S. J. Smith, T. S. Stein, and M. N. Uddin, Phys. Rev. A 38, 1207 (1988).

    Article  ADS  Google Scholar 

  6. W. E. Kauppila and T. S. Stein, Adv. At. Molec. Opt. Phys. 26, 1 (1990).

    Google Scholar 

  7. G. Laricchia and M. Charlton, in Positron Beams and Their Applications, P. Coleman, ed. (World Scientific, Singapore, 2000), p. 41.

    Google Scholar 

  8. G. Laricchia and C. Wilkin, Nucl. Instr. Meth. B 143, 135 (1998).

    Article  ADS  Google Scholar 

  9. R. R. Lucchese and F. A. Gianturco, Intern. Rev. Phys. Chem. 15, 429 (1996).

    Article  Google Scholar 

  10. F. A. Gianturco and R. R. Lucchese, Phys. Rev. A 60, 4567 (1999).

    Article  ADS  Google Scholar 

  11. F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 102 5743 (1995).

    Article  ADS  Google Scholar 

  12. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  13. E. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986).

    Article  ADS  Google Scholar 

  14. T. L. Gibson, J. Phys. B 23, 767 (1990).

    Article  ADS  Google Scholar 

  15. T. L. Gibson, J. Phys. B 25, 1321 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  16. O. Sueoka, H. Takaki, and A. Hamada, At. Collision Res. Japan 23, 6 (1997).

    Google Scholar 

  17. J. Sun, G. Yu, Y. Jiang, and S. Zhang, Eur. Phys. J. D 4, 83 (1998).

    Article  ADS  Google Scholar 

  18. e. g. see: E. A. G. Armour, Phys. Rep. 169, 2 (1988).

    Article  ADS  Google Scholar 

  19. R. N. Hewitt, C. J. Noble and B. H. Bransden, J. Phys. B 25, 557 (1992).

    Article  ADS  Google Scholar 

  20. M. A. Morrison, Adv. At. Mol. Phys., 24, 51 (1988).

    Article  Google Scholar 

  21. H. D. Meyer, Phys. Rev. A 40, 5605 (1989).

    Article  ADS  Google Scholar 

  22. F. A. Gianturco, A. Jain and J. A. Rodriguez-Ruiz, Phys. Rev. A 48, 4321 (1993).

    Article  ADS  Google Scholar 

  23. F. A. Gianturco and J. A. Rodriguez-Ruiz, Phys. Rev. A 47, 1075 (1993).

    Article  ADS  Google Scholar 

  24. F. A. Gianturco and R. Melissa, Europhys. Lett. 33, 661 (1996).

    Article  ADS  Google Scholar 

  25. F. A. Gianturco, J. A. Rodriguez-Ruiz, and N. Sanna Phys. Rev. A 52, 1257 (1995).

    Article  ADS  Google Scholar 

  26. J. K. O’Connell and N. F. Lane, Phys. Rev. A 27, 1893 (1983).

    Article  ADS  Google Scholar 

  27. A. Jain, Phys, Rev. A 41, 2437 (1990).

    Article  ADS  Google Scholar 

  28. F. A. Gianturco and R. R. Lucchese, J. Chem. Phys. 111, 6769 (1999).

    Article  ADS  Google Scholar 

  29. M. A. Morrison and P. J. Hay, Phys. Rev. A 20, 740 (1979).

    Article  ADS  Google Scholar 

  30. D. G. Truhlar, D. A. Dixon, and R. A. Eades, J. Phys. B 12, 1913 (1979).

    Article  ADS  Google Scholar 

  31. F. A. Gianturco and A. Jain, Phys. Rep. 143, 347 (1986).

    Article  ADS  Google Scholar 

  32. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).

    Google Scholar 

  33. J. M. St-Arnaud and T. K. Bose, J. Chem. Phys. 71, 4951 (1979).

    Article  ADS  Google Scholar 

  34. G. Maroulis, Chem. Phys. Lett. 312, 255 (1999).

    Article  ADS  Google Scholar 

  35. T. L. Gibson, “Positron-Matter Interactions Page,” 26 June 2000, <http://www.phys.ttu.edu/∼ritlg/research/pos1.html> (16 January 2001).

  36. A. Schäfer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).

    Article  ADS  Google Scholar 

  37. T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese, How to Build a Beowulf: A Guide to the Implementation and Application of PC Clusters (MIT Press, Cambridge, 1999).

    Google Scholar 

  38. D. C. Frost, C. A. McDowell, J. S. Sandhu, and D. A. Vroom, J. Chem. Phys. 46, 2008 (1967).

    Article  ADS  Google Scholar 

  39. R. Curik, F. A. Gianturco, and N. Sanna, J. Phys. B 33, 615 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lucchese, R.R., Gianturco, F.A., Nichols, P., Gibson, T.L. (2001). A Test Calculation on SF6 of Model Potentials for Correlation and Polarization Effects in Positron Scattering from Molecules. In: Surko, C.M., Gianturco, F.A. (eds) New Directions in Antimatter Chemistry and Physics. Springer, Dordrecht. https://doi.org/10.1007/0-306-47613-4_25

Download citation

  • DOI: https://doi.org/10.1007/0-306-47613-4_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7152-6

  • Online ISBN: 978-0-306-47613-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics