Skip to main content

Abstract

This chapter is about chemical compounds containing both matter and antimatter, the latter in the form of positrons. Most of our knowledge of such compounds comes from quantum mechanical calculations. Our discussion includes some issues relating to calculating accurate binding energies and annihilation rates. Our current knowledge (up to January 1, 2001) of antimatter compounds is sumarized in several tables. About 50 compounds have been characterized, most of them within the past five years. A possible set of calculations and experiments for the near future is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997).

    Article  ADS  Google Scholar 

  2. D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998).

    ADS  Google Scholar 

  3. H. A. Kurtz and K. D. Jordan, J. Chem. Phys. 75, 1876 (1981).

    Article  ADS  Google Scholar 

  4. M. Mella, S. Chiesa, D. Bressanini, and G. Morosi, elsewhere in this volume.

    Google Scholar 

  5. J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, elsewhere in this volume.

    Google Scholar 

  6. M. Tachikawa, I. Shimamura, R. J. Buenker, and M. Kimura, elsewhere in this volume.

    Google Scholar 

  7. D. M. Schrader and Y. C. Jean, in Positron and Positronium Chemistry, edited by D. M. Schrader and Y. C. Jean (Elsevier Science Publishers, Amsterdam, 1988), p. 1.

    Google Scholar 

  8. J. A. Wheeler, Ann. N. Y. Acad. Sci. 48, 219 (1946).

    Article  ADS  Google Scholar 

  9. R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956).

    Article  ADS  Google Scholar 

  10. Chang Lee, Zh. Eksp. Teor. Fiz. 33, 365 (1957) [Soviet Physics-JETP 6, 281 (1958)].

    MATH  Google Scholar 

  11. S. M. Neamtan, G. Darewych, and G. Oczkowski, Phys. Rev. 126, 193 (1962).

    Article  ADS  Google Scholar 

  12. J. Pirenne, Arch. sci. phys. et nat. 29, 207 (1947).

    MathSciNet  Google Scholar 

  13. V. B. Berestetski, Zh. Eksp. Teor. Fiz. 19, 1130 (1949).

    Google Scholar 

  14. R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).

    Article  ADS  MATH  Google Scholar 

  15. T. Fulton and R. Karplus, Phys. Rev. 93, 1109 (1954).

    ADS  MATH  Google Scholar 

  16. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1959).

    Google Scholar 

  17. S. Mohoroviĉić, Astron. Nacht. 253, 94 (1934).

    ADS  Google Scholar 

  18. A. E. Ruark, Phys. Rev. 68, 278 (1945).

    Article  ADS  Google Scholar 

  19. A. P. Mills, Jr., Phys. Rev. A 27, 262 (1983).

    Article  ADS  Google Scholar 

  20. M. W. Ritter, P. O. Egan, V. W. Hughes and K. A. Woodle, Phys. Rev. A 30, 1331 (1984).

    Article  ADS  Google Scholar 

  21. B. A. Kniehl and A. A. Penin, Los Alamos Natl. Lab., Prepr. Arch., High Energy Phys.-Phenomenol. (2000) 1–8, ar Xiv:hep-ph/0010159, 16 Oct 2000. URL: http://xxx.lanl.gov/pdf/hep-ph/0010159.

  22. A. H. Al-Ramadhan and D. W. Gidley, Phys. Rev. Lett. 72, 1632 (1994).

    Article  ADS  Google Scholar 

  23. C. I. Westbrook, D. W. Gidley, R. S. Conti, and A. Rich, Phys. Rev. A 40, 5489 (1989).

    Article  ADS  Google Scholar 

  24. J. S. Nico, D. W. Gidley, A. Rich, and P. W. Zitzewitz, Phys. Rev. Lett. 65, 1344 (1990).

    Article  ADS  Google Scholar 

  25. S. Asai, S. Orito, and N. Shinohara, Phys. Lett. B357, 475 (1995).

    ADS  Google Scholar 

  26. A. M Frolov, Phys. Rev. A 60, 2834 (1999).

    Article  ADS  Google Scholar 

  27. H. Cox, P. E. Sinclair, S. J. Smith, and B. Y. Sutcliffe, Mol. Phys. 87, 399 (1996).

    Article  ADS  Google Scholar 

  28. Y. K. Ho, Phys. Rev. A 48, 4780 (1993).

    ADS  Google Scholar 

  29. J. Usukura, K. Varga, and Y. Suzuki, Phys. Rev. A 58, 1918 (1998).

    Article  ADS  Google Scholar 

  30. S. L. Saito and F. Sasaki, J. Chem. Phys. 102, 8040 (1995).

    ADS  Google Scholar 

  31. K. Strasburger and H. Chojnacki, Chem. Phys. Lett. 241, 485 (1995).

    Article  ADS  Google Scholar 

  32. Z.-C. Yan and Y. K. Ho, Phys. Rev. A 59, 2697 (1999).

    ADS  Google Scholar 

  33. S. L. Saito, Chem. Phys. Lett. 245, 54 (1995).

    Article  ADS  Google Scholar 

  34. V. I. Gol’danskiľ, A. V. Ivanova, and E. P. Prokop’ev, Zh. Eksp. Teor. Fiz. 47, 659 (1964) [Soviet Physics-JETP 20, 440 (1965)].

    Google Scholar 

  35. P. U. Arifov and R. M. Gataullin, Teor. At. At. Spektrov, Mater. Vses. Semin. 1973 1, 35 (1974) [Chem. Abstr. 84, 185144 (1976)].

    Google Scholar 

  36. A. J. Patrick and P. E. Cade, J. Chem. Phys. 75, 1893 (1981).

    Article  ADS  Google Scholar 

  37. P. U. Arifov, P. O. Bogdanovich, I. M. Makhmudov, and Z. B. Rudzikas, Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk, No. 5, 54 (1979).

    Google Scholar 

  38. P. E. Cade and A. Farazdel, J. Chem. Phys. 66, 2598 (1977).

    Article  ADS  Google Scholar 

  39. E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).

    ADS  Google Scholar 

  40. O. H. Crawford, Mol. Phys. 20, 585 (1971).

    ADS  Google Scholar 

  41. O. H. Crawford and W. R. Garrett, J. Chem. Phys. 66, 4968 (1977).

    Article  ADS  Google Scholar 

  42. D. M. Schrader, manuscript in preparation.

    Google Scholar 

  43. J. Cizek, F. Becvar, and I. Prochazka, Nucl. Instrum. Methods Phys. Res., Sect. A 450, 325 (2000).

    ADS  Google Scholar 

  44. G. Consolati and F. Quasso, Phys. Rev. B 50, 5848 (1994).

    Article  ADS  Google Scholar 

  45. D. M. Schrader, Nucl. Instrum. Methods Phys. Res. B 143, 209 (1998).

    Article  ADS  Google Scholar 

  46. T. Kato, Comm. Pure Appl. Math. 10, 151 (1957).

    MathSciNet  MATH  Google Scholar 

  47. R. Jastrow, Phys. Rev. 98, 1479 (1955).

    Article  MATH  ADS  Google Scholar 

  48. D. M. Schrader, T. Yoshida, and K. Iguchi, Phys. Rev. Lett. 68, 3281 (1992).

    Article  ADS  Google Scholar 

  49. P. Langfelder, S. M. Rothstein, and J. Vrbik, J. Chem. Phys. 107, 8525 (1997).

    Article  ADS  Google Scholar 

  50. N. Jiang and D. M. Schrader, J. Chem. Phys. 109, 9430 (1998).

    Article  ADS  Google Scholar 

  51. M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999).

    Article  ADS  Google Scholar 

  52. V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King, Phys. Rev. A 52, 4541 (1995).

    Article  ADS  Google Scholar 

  53. D. M. Schrader, in Recent Advances in Quantum Monte Carlo Methods, edited by W. A. Lester, Jr. (World Scientific Publishing, Singapore, 1997), p. 163.

    Google Scholar 

  54. V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999).

    Article  ADS  Google Scholar 

  55. K. Iwata, G. F. Gribakin, R. G. Greaves, C. Kurz, and C. M. Surko, Phys. Rev. A 61, 022719 (2000).

    Article  ADS  Google Scholar 

  56. Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials and Their Applications in Atomic Physics (Plenum Pres, New York, 1988).

    Google Scholar 

  57. A. Ore, Phys. Rev. 83, 665 (1951).

    Article  ADS  Google Scholar 

  58. C. F. Lebeda and D. M. Schrader, Phys. Rev. 178, 24 (1969).

    Article  ADS  Google Scholar 

  59. S. K. Houston and R. J. Drachman, Phys. Rev. A 7, 819 (1973).

    Article  ADS  Google Scholar 

  60. P. B. Navin, D. M. Schrader, and C. F. Lebeda, Phys. Rev. A 9, 2248 (1974).

    Article  ADS  Google Scholar 

  61. B. A. P. Page and P. A. Fraser, J. Phys. B 7, L389 (1974).

    Article  ADS  Google Scholar 

  62. Y. K. Ho, Phys. Rev. A 17, 1675 (1978).

    ADS  Google Scholar 

  63. Y. K. Ho, Phys. Rev. A 34, 609 (1986).

    ADS  Google Scholar 

  64. A. M. Frolov and V. H. Smith, Jr., Phys. Rev. A 55, 2662 (1997).

    ADS  Google Scholar 

  65. D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A 57, 1678 (1998).

    ADS  Google Scholar 

  66. K. Strasburger and H. Chojnacki, J. Chem. Phys. 108, 3218 (1998).

    Article  ADS  Google Scholar 

  67. G. G. Ryzhikh and J. Mitroy, J. Phys. B 32, 4051 (1999).

    Article  ADS  Google Scholar 

  68. L. Simons, Soc. Sci. Fenn., Comment. Phys. Math. 14(2) (1948).

    Google Scholar 

  69. L. Simons, Phys. Rev. 90, 165 (1953).

    Article  ADS  Google Scholar 

  70. I. Aronson, C. J. Kleinman, and L. Spruch, Phys. Rev. A 4, 841 (1971).

    Article  ADS  Google Scholar 

  71. J. Zs. Mezei, J. Mitroy, R. G. Lovas, and K. Varga, Phys. Rev. A, under review.

    Google Scholar 

  72. S. Golden and I. R. Epstein, Phys. Rev. A 10, 761 (1974).

    ADS  Google Scholar 

  73. G. G. Ryzhikh, J. Mitroy, and K. Varga J. Phys. B 31, 3965 (1998).

    ADS  Google Scholar 

  74. D. Bressanini, M. Mella, G. Morosi, J. Chem. Phys. 108, 4756 (1998).

    Article  ADS  Google Scholar 

  75. N. Jiang and D. M. Schrader, Phys. Rev. Lett. 81, 5113 (1998). [Erratum, ibid. 82, 4735 (1999)].

    ADS  Google Scholar 

  76. D. M. Schrader, Phys. Rev. A 20, 933 (1979).

    ADS  Google Scholar 

  77. D. M. Schrader, T. Yoshida, and K. Iguchi, J. Chem. Phys. 98, 7185 (1993).

    Article  ADS  Google Scholar 

  78. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B 31, L265 (1998).

    ADS  Google Scholar 

  79. J. Mitroy and G. G. Ryzhikh, J. Phys. B 32, L621 (1999).

    ADS  Google Scholar 

  80. G. Ryzhikh and J. Mitroy, J. Phys. B 31, L401 (1998).

    ADS  Google Scholar 

  81. J. Mitroy, M. W. J. Bromley, and G. Ryzhikh, J. Phys. B 32, 2203 (1999).

    ADS  Google Scholar 

  82. J. Mitroy and G. Ryzhikh, J. Phys. B 32, 3839 (1999).

    ADS  Google Scholar 

  83. M. W. J. Bromley and J. Mitroy, J. Phys. B 33, L325 (2000).

    Article  ADS  Google Scholar 

  84. J. Mitroy and G. Ryzhikh, J. Phys. B 32, 2831 (1999).

    ADS  Google Scholar 

  85. M. W. J. Bromley, J. Mitroy, and G. G. Ryzhikh, Nucl. Instrum. Methods Phys. Res. B171, 47 (2000).

    ADS  Google Scholar 

  86. J. Mitroy and G. Ryzhikh, J. Phys. B 32, 1375 (1999).

    ADS  Google Scholar 

  87. V. A. Dzuba, V. V. Flambaum, and C. Harabati, Phys. Rev. A 62, 042504 (2000).

    ADS  Google Scholar 

  88. M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 112, 1063 (2000).

    ADS  Google Scholar 

  89. H. A. Kurtz and K. D. Jordan, J. Phys. B 11, L479 (1978).

    ADS  Google Scholar 

  90. K. Strasburger, J. Chem. Phys. 111, 10555 (1999).

    Article  ADS  Google Scholar 

  91. J. Mitroy and G. G. Ryzhikh, J. Phys. B 33, 3495 (2000).

    ADS  Google Scholar 

  92. D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998).

    ADS  Google Scholar 

  93. C.-M. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 (1984).

    Article  ADS  Google Scholar 

  94. T. Yoshida, G. Miyako, Nan Jiang, and D. M. Schrader, Phys. Rev. A. 54, 964 (1996).

    ADS  Google Scholar 

  95. H. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978).

    Article  Google Scholar 

  96. A. Farazdel and P. E. Cade, Chem. Phys. Lett. 72, 131 (1980).

    Article  ADS  Google Scholar 

  97. D. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U. Mikkelsen, Phys. Rev. Lett. 69, 57 (1992).

    ADS  Google Scholar 

  98. A. P. Mills, Jr., Phys. Rev. Lett. 50, 671 (1983).

    Article  ADS  Google Scholar 

  99. S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969).

    Article  Google Scholar 

  100. V. I. Goldanskii, At. En. Rev. 6, 3 (1968).

    Google Scholar 

  101. D. A. L. Paul, Can. J. Phys. 37, 1059 (1959).

    ADS  Google Scholar 

  102. S. J. Tao, S. Y. Chuang, and J. Wilkenfeld, Phys. Rev. A 6, 1967 (1972).

    Article  ADS  Google Scholar 

  103. V. I. Goldanskii, A. D. Mokrushin, A. O. Tatur, and V. P. Shantarovich, Kinet. Katal. 13, 961 (1972) [Kinet. Catal. 13, 861 (1972)].

    Google Scholar 

  104. V. I. Goldanskii and V. P. Shantarovich, Appl. Phys. 3, 335 (1974).

    Article  ADS  Google Scholar 

  105. J. R. Andersen, N. J. Pedersen, O. E. Mogensen, and P. Christensen, Chem. Phys. Lett. 63, 171 (1979).

    Article  ADS  Google Scholar 

  106. A. Farazdel and P. E. Cade, J. Chem. Phys. 66, 2612 (1977).

    Article  ADS  Google Scholar 

  107. H. Nakanishi, Y. Kobayashi, and Y. Ujihira, Nippon Kagaku Kaishi 1979, 1198.

    Google Scholar 

  108. J. Ch. Abbe, G. Duplatre, A. G. Maddock, and A. Haessler, Radiat. Phys. Chem. 15, 167 (1980).

    Google Scholar 

  109. P. Pfluger, K.-P. Ackermann, R. Lapka, E. Schüpfer, R. Jeker, H.-J. Güntherodt, E. Cartier, and F. Heinrich, Synth. Metals 2, 285 (1980).

    Google Scholar 

  110. E. Cartier, F. Heinrich, P. Pfluger, and H.-J. Güntherodt, Phys. Rev. Lett. 46, 272 (1981).

    Article  ADS  Google Scholar 

  111. E. Cartier, F. Heinrich, H. Kiess, G. Wieners, and M. Monkenbusch, in Positron Annihilation, edited by P. C. Jain, R. M. Singru, and K. P. Gopinathan (World Scientific, Singapore, 1985), p. 218.

    Google Scholar 

  112. H. Murakami, M. Sano, I. Kanazawa, T. Enoki, T. Kurihara, Y. Sakurai, and H. Inokuchi, J. Chem. Phys. 82, 4728 (1985).

    Article  ADS  Google Scholar 

  113. A. Gainotti, C. Ghezzi, M. Manfredi, and L. Zecchina, Nuovo Cimento B 56, 47 (1968).

    ADS  Google Scholar 

  114. A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  115. M. Deutsch, Phys. Rev. 82, 455 (1951).

    Article  ADS  Google Scholar 

  116. B. Gittelman, E. P. Dulit, and M. Deutsch, Bull. Am. Phys. Soc. 1, 69, XA9 (1956).

    Google Scholar 

  117. M. Heinberg and L. A. Page, Phys. Rev. 107, 1589 (1957).

    Article  ADS  Google Scholar 

  118. A. D. Mokrushin and V. I. Goldanskii, Zh. Eksp. Teor. Fiz. 53, 478 (1967) [Soviet Physics-JETP 26, 314 (1968)].

    Google Scholar 

  119. C. L. Cocke and R. E. Olson, Phys. Rept. 205, 153 (1991).

    Article  ADS  Google Scholar 

  120. J. Ullrich, R. Moshammer, R. DÖrner, O. Jagutzki, V. Mergel, H. Schmidt-BÖcking, and L. Spielberger, J. Phys. B 30, 2917 (1997).

    ADS  Google Scholar 

  121. O. H. Crawford, Phys. Rev. A 49, R3147 (1994).

    Article  ADS  Google Scholar 

  122. K. Iwata, G. F. Gribakin, R. G. Greaves, and C. M. Surko, Phys. Rev. Lett. 79, 39 (1997).

    Article  ADS  Google Scholar 

  123. J. Xu, L. D. Hulett, J. Moxom, W. Wu, S. Datz, and D. M. Schrader, Phys. Rev. A 56, R4373 (1997).

    Article  ADS  Google Scholar 

  124. A. Passner, C. M. Surko, M. Leventhal, and A. P. Mills, Jr., Phys. Rev. A 39, 3706 (1989).

    Article  ADS  Google Scholar 

  125. D. L. Donohue, L. D. Hulett, Jr., G. L. Glish, S. A. McLuckey, H. S. McKown, and B. A. Eckenrode, in Proc. 37th ASMS Conference on Mass Spectrometry and Allied Topics (Miami Beach, May, 1989), p. 584.

    Google Scholar 

  126. D. L. Donohue, L. D. Hulett, Jr., B. A. Eckenrode, S. A. McLuckey, and G. L. Glish, Chem. Phys. Lett. 168, 37 (1990).

    Article  ADS  Google Scholar 

  127. H. S. W. Massey, Electronic and Ionic Impact Phenomena, 2nd ed., vol. II (Clarendon Press. Oxford, 1969).

    Google Scholar 

  128. J. N. Bardsley, A. Herzenberg, and F. Mandl, Proc. Phys. Soc. (London) 89, 321 (1966).

    ADS  Google Scholar 

  129. J. C. Y. Chen. Phys. Rev. 148, 66 (1966).

    Article  ADS  Google Scholar 

  130. G. H. Dunn, Phys. Rev. Lett. 8, 62 (1962).

    Article  ADS  Google Scholar 

  131. F. H. Read, J. Phys. B 1, 893 (1968).

    ADS  Google Scholar 

  132. J. Moxom, J. Xu, G. Laricchia, L. D. Hulett, D. M. Schrader, Y. Kobayashi, B. Somieski, and T. A. Lewis, Nucl. Instrum. Methods Phys. Res. B 143, 112 (1998).

    Article  ADS  Google Scholar 

  133. T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996).

    Article  Google Scholar 

  134. J. Mitroy and G. G. Ryzhikh, J. Phys. B 32, L411 (1999).

    ADS  Google Scholar 

  135. A. P. Mills, Jr., Phys. Rev. Lett. 46, 717 (1981).

    Article  ADS  Google Scholar 

  136. D. Bressanini, M. Mella, and G. Morosi, Chem. Phys. Lett. 272, 370 (1997).

    Article  ADS  Google Scholar 

  137. R. H. Howell, private communication.

    Google Scholar 

  138. R. H. Howell, R. A. Alvarez, and M. Stanek, Appl. Phys. Lett. 40, 751 (1982).

    Article  ADS  Google Scholar 

  139. A. P. Mills, Jr. and E. M. Gullikson, Appl. Phys. Lett. 49, 1121 (1986).

    Article  ADS  Google Scholar 

  140. A. P. Mills, Jr., Appl. Phys. 23, 189 (1980).

    Article  ADS  Google Scholar 

  141. G. R. Brandes, K. F. Canter, and A. P. Mills, Jr., Phys. Rev. Lett. 61, 492 (1989).

    ADS  Google Scholar 

  142. A. M. Frolov and V. H. Smith, Jr., J. Phys. B 29, L433 (1996).

    Article  ADS  Google Scholar 

  143. A. P. Mills, Jr. and L. Pfeiffer, Phys. Rev. B 32, 53 (1985).

    Article  ADS  Google Scholar 

  144. A. P. Mills, Jr., E. D. Shaw, M. Leventhal, R. J. Chichester, and D. M. Zuckerman, Phys. Rev. B 44, 5791 (1991).

    Article  ADS  Google Scholar 

  145. M. L. Knotek and P. J. Feibelman, Phys. Rev. Lett. 40, 964 (1978).

    Article  ADS  Google Scholar 

  146. R. G. Greaves and C. M. Surko, elsewhere in this volume.

    Google Scholar 

  147. J. A. Golovchenko and D. B. Cassidy, elsewhere in this volume.

    Google Scholar 

  148. A. Karlson, M. H. Mittleman, J. Phys. B 29, 4609 (1996).

    Article  ADS  Google Scholar 

  149. J. Ackermann, J. Shertzer, and P. Schmelcher, Phys. Rev. Lett. 78, 199 (1997).

    Article  ADS  Google Scholar 

  150. J. Shertzer, J. Ackermann, and P. Schmelcher, Phys. Rev. A 58, 1129 (1998).

    ADS  Google Scholar 

  151. S. R. Swaminathan and D. M. Schrader, Appl. Surf. Sci. 116, 151 (1997).

    Article  ADS  Google Scholar 

  152. D. M. Schrader, in Positron and Positronium Chemistry, edited by D. M. Schrader and Y. C. Jean (Elsevier Science Publishers, Amsterdam, 1988), p. 27.

    Google Scholar 

  153. A. Dupasquier, P. De Natale, and A. Rolando, Phys. Rev. B 43, 10036 (1991).

    Article  ADS  Google Scholar 

  154. G. Laricchia and C. Wilkin, Phys. Rev. Lett. 79, 2241 (1997).

    Article  ADS  Google Scholar 

  155. J. Mitroy and G. G. Ryzhikh, Phys. Rev. Lett. 83, 3570 (1999).

    Article  ADS  Google Scholar 

  156. G. G. Ryzhikh and J. Mitroy, J. Phys. B 33, 2229 (2000).

    Article  ADS  Google Scholar 

  157. A. S. Ghosh and T. Mukherjee, Hyperfine Interactions, 89, 299 (1994).

    ADS  Google Scholar 

  158. H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, vol. I (Clarendon Press, Oxford, 1969).

    Google Scholar 

  159. D. M. Schrader, unpublished calculations (1993).

    Google Scholar 

  160. L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, in Electron-Molecule Interactions and Their Applications, vol. 1, edited by L. G. Christophorou (Academic, New York, 1984), p. 477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schrader, D.M., Moxom, J. (2001). Antimatter Compounds. In: Surko, C.M., Gianturco, F.A. (eds) New Directions in Antimatter Chemistry and Physics. Springer, Dordrecht. https://doi.org/10.1007/0-306-47613-4_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-47613-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7152-6

  • Online ISBN: 978-0-306-47613-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics