Skip to main content

Ontogenesis of Gabaergic and Glutamatergic Synaptic Transmission

  • Chapter
Neuropsychology of Childhood Epilepsy

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 50))

  • 274 Accesses

Conclusion

In conclusion, the neonatal network shifts from one in which GABAa and NMDA receptors dominate and mediate most of the excitatory drive on developing neurons to an adult form in which glutamate mediates excitation through activation of AMPA and NMDA receptors and GABA exerts its well documented inhibitory action. This sequential pattern of development in addition with transient functional over-expression of neurotransmitter will affect seizure thresholds as well as clinical manifestation of the seizures in the developing brain.

In the mammalian CNS, maturation of neuronal network extends into postnatal life, and is often characterized by intense remodeling of connectivity. Initially demonstrated at the neuromuscular junction, remodeling of connectivity within the CNS also appears to be an activity-dependent process. The best-documented example of activity-dependent remodeling in the CNS comes from the study of axonal segregation within the visual system (see 15 for review). Similarly, it has been recently proposed that the appearance of functional postsynaptic AMPA receptors11 or the shortening of NMDA receptor mediated EPSPs18 are also modulated by neuronal synaptic activity. Thus, seizures in the developing brain may likely affect the pattern and/or the timing of appearance of functional synapses. Since learning and behavioral problems are over-represented in children with epilepsy, one of the main challenges in the future will be to determine whether and how synchronized epileptiform discharges can affect the sequential maturation of GABAergic and glutamatergic synaptic transmission, and more generally the brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Leefmanns, FL (1990): Chloride channels and carriers in nerve, muscle and glial cell. In Alvarez-Leefmanns JF and Russel JM (eds): “Intracellular Chloride Regulation and Synaptic Inhibition in Vertebrate and Invertebrate Neurones”. New York: Plenum Press, pp 109–150.

    Google Scholar 

  2. Baram TZ, Hirsch E and Schultz L (1993): Short-interval amygdala kindling in neonatal rats. Developmental Brain Research 73(1):79–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ben-Ari Y, Cherubini E, Corradetti R and Gaiarsa JL (1989): Giant synaptic potentials in immature rat CA3 hippocampal neurones. Journal of Physiology 416:303–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O and Gaiarsa JL (1997): GABA-A, NMDA and AMPA receptors: a developmentally regulated “menage à trios”. Trends in Neurosciences 20(11): 523–529.

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Ari Y and Represa A (1990): Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends in Neurosciences 13(8):312–318.

    Article  CAS  PubMed  Google Scholar 

  6. Burgard EC and Hablitz JJ (1993): Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. Journal of Neurophysiology 69(1):230–240.

    CAS  PubMed  Google Scholar 

  7. Carmignoto G and Vicini S (1992): Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258(5084): 1007–1011.

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Trombley PQ and van den Pol AN (1996): Excitatory actions of GABA in developing rat hypothalamic neurones. Journal of Physiology (London) 494(2):451–464.

    Article  CAS  Google Scholar 

  9. Dobbing J and Sands J (1979): Comparative aspects of the brain growth spurt. Early Human Development 3(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  10. Dudek SM and Bear MF (1993): Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. Journal of Neuroscience 13(7):2910–2918.

    CAS  PubMed  Google Scholar 

  11. Durand GM, Kovalchuk Y and Konnerth A (1996): Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381:71–75.

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda A, Mody I and Prince DA (1993): Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. Journal of Neurophysiolology 70(1):448–452.

    CAS  Google Scholar 

  13. Gaiarsa JL, Tseeb V and Ben-Ari Y (1995): Postnatal development of pre-and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat. Journal of Neurophysiology 73(1):246–255.

    CAS  PubMed  Google Scholar 

  14. Gao BX and Ziskind-Conhaim L (1995): Development of glycine-and GABA-gated currents in rat spinal motoneurons. Journal of Neurophysiology 74(1):113–121.

    CAS  PubMed  Google Scholar 

  15. Goodman CS and Shatz CJ (1993): Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 (Suppl):77–98.

    Article  PubMed  Google Scholar 

  16. Gomez-Di Cesare CM, Smith KL, Rice FL and Swann JW (1996): Anatomical properties of fast spiking cells that initiate synchronized population discharges in immature hippocampus. Neuroscience 75(1):83–97.

    Article  CAS  Google Scholar 

  17. Gomez-Di Cesare CM, Smith KL, Rice FL and Swann JW (1997): Axonal remodeling during postnatal maturation of CA3 hippocampal pyramidal neurons. Journal of Comparative Neurology 384(2):165–180.

    Article  Google Scholar 

  18. Gottmann K, Mehrle A, Gisselmann G and Hatt H (1997): Presynaptic control of subunit composition of NMDA receptors mediating synaptic plasticity. Journal of Neuroscience 17(8):2766–2774.

    CAS  PubMed  Google Scholar 

  19. Haas KZ, Sperber EF and Moshe SL (1990): Kindling in developing animals: expression of severe seizures and enhanced development of bilateral foci. Developmental Brain Research 56(2):275–280.

    Article  CAS  PubMed  Google Scholar 

  20. Hablitz JJ (1987): Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. Journal of Neurophysiology 58(5): 1052–1065.

    CAS  PubMed  Google Scholar 

  21. Hestrin S (1992): Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357:686–689.

    Article  CAS  PubMed  Google Scholar 

  22. Holmes GL (1997): Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia 38(1):12–30.

    Article  CAS  PubMed  Google Scholar 

  23. Hosokawa Y, Sciancalepore M, Stratta F, Martina M and Cherubini E (1994): Developmental changes in spontaneous GABAA-mediated synaptic events in rat hippocampal CA3 neurons. European Journal of Neuroscience 6:805–813.

    Article  CAS  PubMed  Google Scholar 

  24. Isaac JT, Crair MC and Nicoll RA (1997): Malenka RC Silent synapses during development of thalamocortical inputs Neuron 18(2):269–280.

    Article  CAS  PubMed  Google Scholar 

  25. Kaila K (1994): Ionic basis of GABA-A receptor channel function in the nervous system. Progress in Neurobiology 42(4):489–537.

    Article  CAS  PubMed  Google Scholar 

  26. Khazipov R, Leinekugel X, Khalilov I, Gaiarsa JL and Ben-Ari Y (1997): Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. Journal of Physiololgy (London) 498:763–772.

    Article  CAS  Google Scholar 

  27. Khazipov R, Ragozzino D and Bregestovski P (1995): Kinetics and Mg2+ block of N-methyl-D-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience 69(4): 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  28. Kriegstein AR, Suppes T and Prince DA (1987): Cellular and synaptic physiology and epileptogenesis of developing rat neocortical neurons in vitro. Brain Research 431(2): 161–171.

    Article  CAS  PubMed  Google Scholar 

  29. Kullmann DM, Erdemli G and Asztely F (1996): LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17(3):461–474.

    Article  CAS  PubMed  Google Scholar 

  30. Laurie DJ, Wisden W and Seeburg PH (1992): The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. Journal of Neuroscience 12(11):4151–4172.

    CAS  PubMed  Google Scholar 

  31. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y and Khazipov R (1997): Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18(2):243–255.

    Article  CAS  PubMed  Google Scholar 

  32. McDonald JW and Johnston MV (1990): Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews 15(1):41–70.

    Article  PubMed  Google Scholar 

  33. McLean HA, Rovira C, Ben-Ari Y and Gaiarsa JL (1995): NMDA-dependent GABAA-mediated polysynaptic potentials in the neonatal rat hippocampal CA3 region. European Journal of Neuroscience 7(7): 1442–1448.

    Article  CAS  PubMed  Google Scholar 

  34. McLean HA, Caillard O, Khazipov R, Ben-Ari Y and Gaiarsa JL (1996a): Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. Journal of Neurophysiology 76(2):1036–1046.

    CAS  PubMed  Google Scholar 

  35. McLean HA, Caillard O, Ben-Ari Y and Gaiarsa JL (1996b): Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. Journal of Physiology (London) 496:471–477.

    Article  CAS  Google Scholar 

  36. Michelson HB and Lothman EW (1991): An ontogenetic study of kindling using rapidly recurring hippocampal seizures. Developmental Brain Research 61(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  37. Michelson HB and Lothman EW (1992): Ontogeny of epileptogenesis in the rat hippocampus: a study of the influence of GABAergic inhibition. Developmental Brain Research 66(2):237–243.

    Article  CAS  PubMed  Google Scholar 

  38. Monyer H, Burnashev N, Laurie DJ, Sakmann B and Seeburg PH (1994): Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540.

    Article  CAS  PubMed  Google Scholar 

  39. Nishimaru H, lizuka M, Ozaki S and Kudo N (1996): Spontaneous motoneuronal activity mediated by glycine and GABA in the spinal cord of rat fetuses in vitro. Journal of Physiology (London) 497:131–143.

    Article  CAS  Google Scholar 

  40. Pellegrini-Giampietro DE, Bennett MV and Zukin RS (1991): Differential expression of three glutamate receptor genes in developing rat brain: an in situ hybridization study. Proceedings of the National Academy of Sciences U S A 88(10):4157–4161.

    Article  CAS  Google Scholar 

  41. Romijn HJ, Hofman MA and Gramsbergen A (1991): At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Human Development 26(1):61–67.

    Article  CAS  PubMed  Google Scholar 

  42. Schwartzkroin PA (1984): Epileptogenesis in the immature CNS. In Schwartzkroin PA and Wheal HV (eds): “Electrophysiology of Epilepsy”. London: Academic Press, pp 389–412.

    Google Scholar 

  43. Sivilotti L and Nistri A (1991): GABA receptor mechanisms in the central nervous system. Progress in Neurobiology 36(1):35–92.

    Article  CAS  PubMed  Google Scholar 

  44. Stelzer A, Slater NT and ten Bruggencate G (1987): Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326:698–701.

    Article  CAS  PubMed  Google Scholar 

  45. Swann JW (1995): Synaptogenesis and epileptogenesis in developing neuronal network. In Schwartzkroin PA, Moshé SL, Noebels JL and Swann JW (eds): “Brain Development and Epilepsy”. New York: Oxford University Press, pp 195–233.

    Google Scholar 

  46. Takebayashi M, Kagaya A, Hayashi T, Motohashi N and Yamawaki S (1996): gamma-Aminobutyric acid increases intracellular Ca2+ concentration in cultured cortical neurons: role of Cl-transport. European Journal of Pharmacology 297(1–2): 137–143.

    Article  CAS  PubMed  Google Scholar 

  47. Turgeon SM and Albin RL (1994): Postnatal ontogeny of GABAB binding in rat brain. Neuroscience 62(2):601–613.

    Article  CAS  PubMed  Google Scholar 

  48. Wu G, Malinow R and Cline HT (1996): Maturation of a central glutamatergic synapse. Science 274(5289):972–976.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Spigelman I and Carlen PL (1991): Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. Journal of Physiology (London) 444:25–492.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gaiarsa, JL., Ben-Ari, Y. (2001). Ontogenesis of Gabaergic and Glutamatergic Synaptic Transmission. In: Jambaqué, I., Lassonde, M., Dulac, O. (eds) Neuropsychology of Childhood Epilepsy. Advances in Behavioral Biology, vol 50. Springer, Boston, MA. https://doi.org/10.1007/0-306-47612-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47612-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46522-2

  • Online ISBN: 978-0-306-47612-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics