Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, G.C., Mow, V.C. 1982a. Biomechanics of normal and osteoarthrotic articular cartilage, in: Clinical Trends in Orthopaedics (P.D. Wilson, L.R. Straub, eds.), pp. 189–197, Thieme-stratton, New York.

    Google Scholar 

  • Armstrong, G.C., Mow, V.C. 1982b. Variation of the intrinsic mechanical properties of human cartilage with age, degeneration, and water content, J. Bone Jt. Surg. 64-A, 88–94.

    Google Scholar 

  • Barocas, V.H., Tranquillo, R.T. 1997. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance, J. Biomech. Eng. 119, 137–145.

    Google Scholar 

  • Barocas, V.H., Knapp, D.M., Tranquillo, R.T. 1995. Biphasic mechanical theory of fibrillar gels, Beaver Creek (Colorado): ASME, BED-29, pp. 309–310.

    Google Scholar 

  • Basser, P.J. 1992. Interstitial pressure, volume and flow during infusion into brain tissue, Microvasc. Res. 44, 143–165.

    Article  Google Scholar 

  • Bassett, C.A.L., Pawluk, R.J. 1972. Electrical behavior of cartilage during loading, Science 178, 982–983.

    Google Scholar 

  • Bayliss, M.T., Urban, J.P.G., Jhonstone, B., Holm, S. 1986. In vitro method for measuring synthesis rates in the intervertebral disc, J. Orthop. Res. 4, 10–17.

    Article  Google Scholar 

  • Beherens, F., Kraft, E.L., Oegema, T.R. 1989. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation, J. Orthop. Res. 7, 335–343.

    Google Scholar 

  • Biot, M.A. 1941. General theory of three-dimensional consolidation, J. Appl. Phys. 12, 155–164.

    MATH  Google Scholar 

  • Biot, M.A. 1955. Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys. 26, 182–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen, R.M. 1976. Theory of mixtures, in: Continuum Physics III (A.C. Eringen, ed.), pp. 1–127, Academic Press, New York.

    Google Scholar 

  • Bowen, R.M. 1980. Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci. 18, 1129–1148.

    Article  MATH  Google Scholar 

  • Christensen, R.M. 1971. Theory of Viscoelasticity: An Introduction, Academic Press, New York.

    Google Scholar 

  • Clark, J.M. 1985. The organization of collagen in cryofractured rabbit articular cartilage: a scanning electron microscopic study, J. Orthop. Res. 3, 17–29.

    Article  Google Scholar 

  • Eyre, D.R., Apone, S., Wu, J.J., Ericson, L.H., Walsh, K.A. 1987. Collagen type IX: evidences for covalent linkages to type II collagen in cartilage, FEBS Lett. 220, 337–341.

    Article  Google Scholar 

  • Frank, E.H., and Grodzinsky, A.J. 1987a. Cartilage electromechanics-I. Electrokinetic transduction and the effect of electrolyte pH and ionic strength, J. Biomech. 20, 615–627.

    Google Scholar 

  • Frank, E.H., and Grodzinsky, A.J. 1987b. Cartilage electromechanics-II. A continuum model of cartilage electrokinetic transduction and correlation with experiments. J. Biomech. 20, 629–639.

    Google Scholar 

  • Fukada, E. 1974. Piezoelectric properties of biological macromolecules, Adv. Biophys. 6, 121.

    Google Scholar 

  • Fung, Y.C. 1990. Biomechanics: Motion, Flow, Stress and Growth, Springer, New York.

    MATH  Google Scholar 

  • Fung, Y.C. 1993. Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.

    Google Scholar 

  • Gray, M.L., Pizzanelli, A.M., Grodzinsky, A.J., Lee, R.C. 1988. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6, 777–792.

    Article  Google Scholar 

  • Gray, M.L., Pizzanelli, A.M., Lee, R.C., Grodzinsky, A.J., Swan, D.A. 1989. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta 991, 415–425.

    Google Scholar 

  • Grimshaw, P.E., Grodzinsky, A.J., Yarmush, M.L., Yarmush, D.M. 1989. Dynamic membranes for protein transport: Chemical and electrical control, Chem. Eng. Sci. 44, 827–840.

    Google Scholar 

  • Grodzinsky, A.J. 1983. Electromechanical and physiochemical properties of connective tissue, CRC Crit. Rev. Biomed. Eng. 9, 133–199.

    Google Scholar 

  • Grodzinsky, A.J., Liphitz, H., Glimcher, M.J. 1978. Electromechanical properties of articular cartilage during compression and stress relaxation, Nature 275, 448–450.

    Article  Google Scholar 

  • Grodzinsky, A.J., Roth, V., Myers, E.R., Grossman, W.D., Mow, V.C. 1981. The significance of electric and osmotic forces in the non-equilibrium swelling behavior of articular cartilage in tension, J. Biomech. Eng. 103, 221–231.

    Google Scholar 

  • Hall, A.C., Urban, J.P., Gehl, K. A. 1991. The effects of hydrostatic pressure on matrix synthesis in articular cartilage, J. Orthop. Res. 9, 1–10.

    Article  Google Scholar 

  • Hodge, W.A., Fijan, R.S., Carlson, K.L., Burgess, R.G., Harris, W.H., Mann, R.W. 1986. Contact pressure in the human hip joint measured in vivo, Proc. Natl. Acad. Sci. USA 83, 2879–2883.

    Google Scholar 

  • Holmes, M.H. 1986. Finite deformation of soft tissue: analysis of a mixture model in uniaxial compression, J. Biomech. Eng. 108, 372–381.

    Google Scholar 

  • Holmes, M.H., Lai, W.M., Mow, V.C. 1985. Singular perturbation analysis of the nonlinear, flow-dependent, compressive stress-relaxation behavior of articular cartilage. J. Biomech. Eng. 107, 206–218.

    Article  Google Scholar 

  • Jain, R., Jayaraman, G. 1987. A theoretical model for water flux through the arterial wall, J. Biomech. Eng. 109, 311–317.

    Google Scholar 

  • Jenkins, R.B., Little, R.W. 1974. A constitutive equation for parallel-fibered elastic tissue, J. Biomech. 7, 397.

    Article  Google Scholar 

  • Jones, I.L., Klamfeld, D.D.S., Sandstrom, T. 1982. The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro, Clin. Orthop. Relat. Res. 165, 283–289.

    Google Scholar 

  • Katz, E.P., Watchel, E.J., Maroudas, A. 1986. Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage, Biochim. Biophys. Acta 882, 136–139.

    Google Scholar 

  • Kenyon, D.E. 1979. A mathematical model of water flux through aortic tissue, Bull. Math. Biol. 41, 79–90.

    Article  MathSciNet  Google Scholar 

  • Kim, Y.J., Sah, R.L., Doong, J.Y., Grodzinsky, A.J. 1988. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168–176.

    Article  Google Scholar 

  • Kuettner, K.E., Schleyerbach, R., Haschall, V.C. 1986. Articular Cartilage Biochemistry, Raven Press, New York.

    Google Scholar 

  • Lai, M.W., Mow, V.C. 1980. Drag-induced compression of articular cartilage during a permeation experiment, Biorheology 17, 111–123.

    Google Scholar 

  • Levick, J.R. 1987a. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72, 409–437.

    Google Scholar 

  • Levick, J.R. 1987b. Relation between hydraulic resistance, composition of the interstitium, in: Interstitial-Lymphatic Liquid and Solute Movement (N.C. Staub, J.C. Hogg, A.R. Hargens, eds.), pp. 124–133, Karger, Basel.

    Google Scholar 

  • Lotke, P.A., Black, J., Richardson, S.J. 1974. Electromechanical properties in human articular cartilage. J. Bone J. Surg. 56A, 1040–1046.

    Google Scholar 

  • Mak, A.F. 1986. The apparent viscoelastic behavior of articular cartilage-the contributions from the intrinsic matrix viscoelasticity, interstitial flows, J. Biomech. Eng. 108, 123–130.

    Article  Google Scholar 

  • Mansour, J.M., Mow, V.C. 1976. The permeability of articular cartilage under compressive strain, at high pressures, J. Bone J. Surg. 58A, 509–516.

    Google Scholar 

  • Maroudas, A., Mizrahi, J., Ben Haim, E., Ziv, I. 1987. Swelling pressure in cartilage, in: Interstitial-Lymphatic Liquid and Solute Movement (N.C. Staub, J.C. Hogg, A.R. Hargens, eds.), pp. 203–212, Karger, Basel.

    Google Scholar 

  • Mow, V.C., Lai, W.M. 1979. Mechanics of animal joints, Annu. Rev. Fluid Mech. 11, 247–288.

    Article  Google Scholar 

  • Mow, V.C., Lai, W.M. 1980. Recent developments in synovial joint biomechanics, SIAM Rev. 22, 275–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Mow, V.C., Soslowsky, L.J. 1991. Friction, lubrication and wear of diarthrodial joints, in: Basic Orthopaedic Biomechanics (V.C. Mow, W.C. Haynes, eds.), pp. 254–291, Raven Press, New York.

    Google Scholar 

  • Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G. 1980a. Biphasic creep, stress relaxation of articular cartilage in compression, theory, experiments, J. Biomech. Eng. 102, 73–84.

    Google Scholar 

  • Mow, V.C., Holmes, M.H., Lai, W.M. 1984. Fluid transport, mechanical properties of articular cartilage: a review, J. Biomech. 17, 377–394.

    Google Scholar 

  • Mow, V.C., Kwan, M.K., Lai, W.M., Holmes, M.H. 1986. A finite deformation theory for nonlinearly permeable soft hydrated biological tissues, in: Frontiers in Biomechanics (S. Schmid-Schonbein, L.-Y. Woo, B.W. Zweifach, eds.), Springer-Verlag, New York.

    Google Scholar 

  • Mow, V.C., Lai, W.M., Hou, J.S. 1990a. A triphasic theory for the swelling properties of hydrated charged soft biological tissues, Appl. Mech. Rev. 43, 134–141.

    Google Scholar 

  • Mow, V.C., Ratcliffe, A., Woo, S.L.-Y. 1990b. Biomechanics of Diarthrodial Joints, I & II, Springer-Verlag, New York.

    Google Scholar 

  • Mow, V.C., Ratcliffe, A., Poole, R.A. 1992. Cartilage, diarthrodial joints as paradigms for hierarchial materials, structures, Biomaterials 13, 67–97.

    Article  Google Scholar 

  • Mow, V.C., Ateshian, G.A., Spilker, R.L. 1993. Biomechanics of diarthrodial joints: a review of twenty years of progress, J. Biomech. Eng. 115, 460–467.

    Google Scholar 

  • Muir, H. 1981. Proteoglycans as organizer of the intercellular matrix, Biochem. Soc. Trans. 9, 1983.

    Google Scholar 

  • Nagashima, T., Tamaki, N., Matsumoto, S., Horwitz, B., Seguchi, Y. 1987. Biomechanics of hydrocephalus: a new mathematical model, Neurosurgery 21, 898–904.

    Google Scholar 

  • Nagashima, T., Horwitz, B., I., R.S. 1990. A mathematical model for vasogenic brain edema, Adv. Neurol. 52, 317–326.

    Google Scholar 

  • Netti, P.A., Baxter, L.T., Boucher, Y., Skalak, R., Jain, R.K. 1995. Time-dependent behavior of interstitial fluid pressure in solid tumors: implication for drug delivery, Cancer Res. 55, 5451–5458.

    Google Scholar 

  • Netti, P.A., Ambrosio, L., Ronca, D., Nicolais, L. 1996. Structure-mechanical A., properties relationship of natural tendons and ligaments, J. Mater. Sci., Materials in Medicine 7, 525.

    Article  Google Scholar 

  • Netti, P.A., Baxter, L.T., Boucher, Y., Skalak, R., Jain, R.K. 1997. Macro and microscopic fluid transport in living tissues: application to solid tumors, AIChE J. 43, 818–834.

    Article  Google Scholar 

  • Nimni, M.E. 1988. Collagen Biochemistry, I, II & III, CRC Press, Boca Raton.

    Google Scholar 

  • Palmosky, M.J., Brandt, K.D. 1984. Effects of salicylate, indomethacin on glycosaminoglycan, prostaglandin E2 synthesis in intact canine knee cartilage ex vivo, Arthritis Rheum. 27, 398–403.

    Google Scholar 

  • Parkkinen, J.J., Lammi, M.J., Helminen, H.J., Tammi, M. 1992. Local stimulation of proteog-lycan synthesis in articular cartilage explants by dynamic compression in vitro, J. Ortho. Res. 10, 610–620.

    Google Scholar 

  • Parkkinen, J.J., Ikonen, J., Lammi, M.J., Laakkonen, J., Tammi, M., Helminen, H.J. 1993. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants, Arch. Biochem. Biophy. 300, 458–465.

    Google Scholar 

  • Poole, A.R., Pidoux, I., Rosemberg, L.C. 1982. An immuno electron microscope study of the organization of proteoglycans monomer, link protein, and collagen in the matrix of articular cartilage, J. Cell Biol. 93, 921–937.

    Google Scholar 

  • Poole, C.A., Flint, M.H., Beaumont, B.W. 1984. Morphological and functional interrelationships of articular cartilage matrix, J. Anat. 138, 113–138.

    Google Scholar 

  • Ratcliffe, A., Mow, V.C. 1996. Articular cartilage, in: Extracellular Matrix (W.D. Comper, ed.), pp. 234–302, OPA, Harwood Academic Publisher, Amsterdam.

    Google Scholar 

  • Redler, I., Zimny, M.L., Mansell, J., Mow, V.C. 1975. Significance of the tidemark of articular cartilage, Clin. Orthop. Relat. Res. 112, 357–362.

    Google Scholar 

  • Roth, V., Mow, V.C. 1980. The intrinsic tensile behaviour of the matrix of bovine articular cartilage, its variation with age, J. Bone Jt. Surg. 62A, 1102–1117.

    Google Scholar 

  • Sah, R.L., Kim, Y.J., Doong, J.Y., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D. 1989. Biosynthetic response of cartilage explants to dynamic compression, J. Orthop. Res. 7, 619–636.

    Article  Google Scholar 

  • Sah, R.L., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D. 1990. Effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in cartilage explants, Bioch. J. 267, 803–808.

    Google Scholar 

  • Saltzman, W.M., Radomsky, M.L., Whaley, K.J., Cone, R.A. 1994. Antibody diffusion in human cervical mucus, Biophys. J. 66, 508–515.

    Article  Google Scholar 

  • Schmidt, M.B., Mow, V.C., Chun, L.E., Eyre, D.R. 1990. Effect of proteoglycan extraction on the tensile behavior of articular cartilage, J. Orthop. Res. 8, 353–363.

    Article  Google Scholar 

  • Schneiderman, R., Keret, D., Maroudas, A. 1986. Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study, J. Orthop. Res. 4, 393–408.

    Article  Google Scholar 

  • Simon, B.R. 1992. Multiphase poroelastic finite element models for soft tissue structure, Appl. Mech. Rev. 45, 191–218.

    Article  Google Scholar 

  • Simon, B.R., Gaballa, M. 1988a. Finite strain poroelastic finite element models for large arterial cross sections, in: Computational Methods in Bioengineering (R.L. Spilker, B.R. Simon, eds.), pp. 325–331, ASME, New York.

    Google Scholar 

  • Simon, B.R., Gaballa, M. 1988b. Poroelastic finite element models for the spinal motion segment including ionic swelling, in: Computational Methods in Bioengineering (R.L. Spilker, B.R. Simon, eds.), pp. 93–99, ASME, New York.

    Google Scholar 

  • Simon, B.R., Wu, J.S.S., Evans, J.H. 1983. Poroelastic mechanical models for the intervertebral disc, in: Advances in Bioengineering (D. Bartel, (ed.), ASME Winter Annual Meeting, Boston, pp. 106–107.

    Google Scholar 

  • Spilker, R.L., Suh, J.K. 1990. Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissue, Comput. Struct. 35, 425–439.

    Article  MATH  Google Scholar 

  • Spilker, R.L., Suh, J.K., Mow, V.C. 1992. A finite element analysis of indentation stressrelaxation response of linear biphasic articular cartilage, J. Biomech. Eng. 114, 192–201.

    Google Scholar 

  • Torzilli, P.A. 1985. Influence of cartilage conformation on its equilibrium water partition, J. Orthop. Res. 3, 473–483.

    Article  Google Scholar 

  • Truesdell, C., Toupin, R.A. 1960. The classical field theories, in: Handbuck der Physik I1I/I, Springer, Berlin.

    Google Scholar 

  • Valhmu, W.B., Stazzone, E.J., Bachrach, N.M., Saed-Nejad, F., Fischer, S.G., Mow, V.C., Ratcliffe, A. 1998. Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression, Arch. Biochem. Biophys. 353, 29–36.

    Article  Google Scholar 

  • Van de Rest, M., Mayne, R. 1988. Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen, J. Biol. Chem. 263, 1615–1618.

    Google Scholar 

  • Winlove, C.P., Parker, K.H. 1995. The physiological function of the extracellular matrix, in: Interstitium, Connective Tissue and Lymphatics (R.K. Reed, G.A. Laine, J.L. Bert, C.P. Winlove, N. McHale, eds.), pp. 137–165, Portland Press, London.

    Google Scholar 

  • Woo, S. L.-Y., Mow, V.C., Lai, W.M. 1987. Biomechanical properties of articular cartilage, in: Handbook of Bioengineering (R. Skalak, S. Chien, eds.), McGraw-Hill, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Netti, P.A., Ambrosio, L. (2002). Articular Cartilage. In: Barbucci, R. (eds) Integrated Biomaterials Science. Springer, Boston, MA. https://doi.org/10.1007/0-306-47583-9_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47583-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46678-6

  • Online ISBN: 978-0-306-47583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics