Skip to main content

Primate Divergence Times

  • Chapter
All Apes Great and Small

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Conclusion

Reevaluation of primate divergence times was necessary after it became obvious that the originally proposed dates are in conflict with the paleontological record. The recently established non-primate calibration points (AC-60 and ER-50)provide divergence times of eutherians and primates that are consistent with the fossil record. Although the divergence times among primates proposed by Arnason, et al. (1996, 1998) may seem unorthodox, they are in agreement with the paleontological record and provide a framework for reevaluating primate evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, J. and Hasegawa, M., 1995, Improved dating of the human-chimpanzee separation in the mitochondrial DNA tree: Heterogeneity among amino acid sites, J. Mol. Evol. 40: 622–628.

    Article  Google Scholar 

  • Adachi, J. and Hasegawa, M., 1996, Model of amino acid substitution in proteins encoded by mitochondrial DNA, J. Mol. Evol. 42: 459–468.

    Google Scholar 

  • Andrews, P., Begun, D.R., and Zylstra, M., 1997, Interrelationships between functional morphology and paleoenvironments in Miocene hominoids. Pp. 29–58 in: (Eds. Begun, D.R., Ward, C.B., and Rose, M.D.), Function, Phylogeny and Fossils: Miocene Hominoid Evolution and Adaptation, Plenum Press, New York.

    Google Scholar 

  • Archibald, J.D., 1996, Fossil evidence for late Cretaceous origin of “hoofed” mammals, Science 272: 1150–1153.

    Google Scholar 

  • Arnason, U. and Gullberg, A., 1996, Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans, Mol. Biol. Evol. 13: 407–417.

    Google Scholar 

  • Arnason, U., Gullberg, A., and Janke, A., 1997, Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and Ferungulates, Mol. Biol. Evol. 14: 762–768.

    Google Scholar 

  • Arnason, U., Gullberg, A., and Janke, A., 1998, Molecular timing of primate divergences as estimated by two non-primate calibration points, J. Mol. Evol. 47: 718–727.

    Google Scholar 

  • Arnason, U., Gullberg, A., Janke, A., and Xu X., 1996, Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs, J. Mol. Evol. 43: 650–661.

    Article  Google Scholar 

  • Arnason, U., Gulberg, A., Gretarsdottir, S., Ursing, B., and Janke, A., 2000, The mitochondrial genome of the sperm whale and the establishment of a new molecular reference for estimating eutherian divergence dates, J. Mol. Evol. 50: 569–578.

    Google Scholar 

  • Bahn, P.G., 1996, Futher back down under, Nature 383: 577–578.

    Article  Google Scholar 

  • Begun, D.R. and Kordos, L., 1997, Phyletic affinities and functional convergence in Dryopithecus and other Miocene and living hominids. Pp. 291–316 in: (Eds. Begun, D.R., Ward, C.B., Rose, M.D.), Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptatio, New York: Plenum Press.

    Google Scholar 

  • de Bonis, L. and Koufos, G., 1997, The phylogenetic and functional implications of Ouranopithecus macedoniensis. Pp. 317–326 in: (Eds. Begun, D.R., Ward, C.B., Rose, M.D.), Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptation New York: Plenum Press.

    Google Scholar 

  • de Bonis, L., Bouvrain, G., Geraads, D., and Koufos, G., 1990, New hominid skull material from the Miocene of Macedonia in northern Greece, Nature 345: 712–714.

    Google Scholar 

  • Cann, R.L., Stoneking, M., and Wilson, A.C., 1987, Mitochondrial DNA and human evolution, Nature 325: 31–36.

    Article  Google Scholar 

  • Easteal, S. and Herbert, G., 1997, Molecular evidence from the nuclear genome for the time frame of human evolution, J. Mol. Evol. 44 (Supplement 1): S121–S132.

    Google Scholar 

  • Felsenstein, J., 1981, Evolutionary trees from DNA sequences: A maximum likelihood approach, J. Mol. Evol. 17: 368–376.

    Article  Google Scholar 

  • Felsenstein, J., 1985, Confidence limits in phylogenisies: An approach using the bootstrap, Evolution 39: 793–791.

    Google Scholar 

  • Fordyce, R.E. and Barnes, L.G., 1994, The evolutionary history of whales and dolphins Annu. Rev. Earth Planet. Sci. 22: 419–455.

    Article  Google Scholar 

  • Fullagar, R., Price, D.M., and Head, L.M., 1996, Early human occupation of northern Australia: Archaeology and thermoluminescence dating of Jinmium rock shelter, Northern Territory, Antiquity 70: 751–773.

    Google Scholar 

  • Godinot, M. and Mahboubi, M., 1992, Earliest known simian primate found in Algeria, Nature 357: 324–326.

    Article  Google Scholar 

  • Goodman, M., 1996, Epilogue: A personal account of the origins of a new paradigm, Molec. Phylogenetics Evol. 5: 269–285.

    Google Scholar 

  • Goodman, M., Miyamoto, M.M., Czelusniak, J., 1987, Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. Pp. 140–176 in: (Ed. Patterson C.), Molecules and Morphology in Evolution: Conflict or Compromise?, New York: Cambridge University Press.

    Google Scholar 

  • Härlid, A., Janke, A., and Arnason, U., 1998, The complete mitochonrial genome of Rhea americana and early avian divergencies, J. Mol. Evol. 46: 669–679.

    Google Scholar 

  • Hasegawa, M., Kishino, H., and Yano, T., 1985, Dating of the human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol. 22: 160–174.

    Google Scholar 

  • Jaeger, J.J., Chaimanee, Y., and Ducrocq, S., 1998, Origin and evolution of Asian hominoid primates. Paleontological data versus molecular data, Comptes Rendus de ľAcadémie des Sciences, Paris, Sciences de la Vie 321: 73–78.

    Google Scholar 

  • Janke, A., and Arnason, U., 1997, The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles), Mol. Biol. Evol. 14: 1266–1272.

    Google Scholar 

  • Janke, A., Xu, X., and Arnason, U., 1997, The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogentic relationship among Monotremata, Marsupialia and Eutheria, Proc. Natl. Acad. Sci., USA 94: 1276–1281.

    Article  Google Scholar 

  • Janke, A., Feldmaier-Fuchs, G., Thomas, W.K., von Haeseler, A., and Pääbo, S., 1994, The marsupial mitochondrial genome and the evolution of placental mammals, Genetics 137: 243–256.

    Google Scholar 

  • Jukes, T.H. and Cantor, C.R., 1969, Evolution of protein molecules. Pp. 21–123 in: (Ed. Nunro, H.N.), Mammalian Protein Metabolism, New York: Academic Press.

    Google Scholar 

  • Kishino, H. and Hasegawa, M., 1989, Evaluation of the maximum likelihood estimate of the evolutioary tree topologies from DNA sequence data, and the branching order in Hominoidea, J. Mol. Evol. 29: 170–179.

    Article  Google Scholar 

  • Martin, R.D., 1990, Primate Origins and Evolution: A Phylogenetic Reconstruction, New Jersey: Princeton University Press.

    Google Scholar 

  • Martin, R.D., 1993, Primate origins: Plugging the gaps, Nature 363: 223–234.

    Google Scholar 

  • Porter, C.A., Scott, P.L., Czelusniak, J., Schneider, H., Schneider, P.M.C., Sampaio, I., and Goodman, M., 1997, Phylogeny and evolution of selected primates as determined by sequences of the e-globin locus and 5′ flanking regions, Int. J. Primatol. 18: 261–295.

    Article  Google Scholar 

  • Rich, T.H., Vickers-Rich, P., Constantine, A., Flannery, T.F., Kool, L., and van Klaveren, N., 1997, A tribosphenic mammal from the Mesozoic of Australia, Science 278: 1438–1442.

    Article  Google Scholar 

  • Saitou, N. and Nei, M., 1987, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Sarich, V.M., 1970, Primate systematics with special reference to Old World monkeys. Pp. 175–266 in: (Eds. Napier, J.R., Napier, P.H.), Old World Monkeys: Evolution, Systematics and Behaviour, New York: Academic Press.

    Google Scholar 

  • Sarich, V.M. and Wilson, A.C., 1967, Immunological time scale for human evolution, Science 158: 1200–1203.

    Google Scholar 

  • Sarich, V.M. and Wilson, A.C., 1973, Generation time and genomic evolution in primates, Science 179: 1144–1147.

    Google Scholar 

  • Sibley, C.G. and Ahlquist, J.E., 1987, DNA hybridization evidence of hominoid phylogeny: Results from an expanded data set, J. Mol. Evol. 26: 99–121.

    Article  Google Scholar 

  • Simons, E.L. and Pilbeam, D., 1965, Preliminary revision of the Dryopithecinae (Pongidae, Anthropoidea), Folia Primatol. 3: 81–152.

    Article  Google Scholar 

  • Templeton, A., 1983, Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to humans and apes, Evolution 37: 221–244.

    Google Scholar 

  • Wilson, A.C., Ochman, H., and Prager, E.M., 1987, Molecular time scale for evolution, Trends Genet. 3: 241–247.

    Article  Google Scholar 

  • Wrangham, R. and Pilbeam, D., this volume.

    Google Scholar 

  • Xu, X. and Arnason, U., 1996, The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan, J. Mol. Evol. 43: 431–437.

    Google Scholar 

  • Xu, X., Janke, A. and Arnason, U., 1996, The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla, and Artiodactyla (+Cetacea), Mol. Biol. Evol. 13: 1167–1173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Janke, A., Arnason, U. (2002). Primate Divergence Times. In: Galdikas, B.M.F., Briggs, N.E., Sheeran, L.K., Shapiro, G.L., Goodall, J. (eds) All Apes Great and Small. Developments in Primatology: Progress and Prospects. Springer, Boston, MA. https://doi.org/10.1007/0-306-47461-1_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47461-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46757-8

  • Online ISBN: 978-0-306-47461-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics