Skip to main content

Part of the book series: Recent Developments in Alcoholism ((RDIA,volume 14))

Abstract

Alcoholic fatty liver and hyperlipemia result from the interaction of ethanol and its oxidation products with hepatic lipid metabolism. An early target of ethanol toxicity is mito-chondrial fatty acid oxidation. Acetaldehyde and reactive oxygen species have been incriminated in the pathogenesis of the mitochondrial injury. Microsomal changes offset deleterious accumulation of fatty acids, leading to enhanced formation of triacylglycerols, which are partly secreted into the plasma and partly accumulate in the liver. However, this compensatory mechanism fades with progression of the liver injury, whereas the production of toxic metabolites increases, exacerbating the lesions and promoting fibrogenesis. The early presence of these changes confers to the fatty liver a worse prognosis than previously thought. Alcoholic hyperlipemia results primarily from increased hepatic secretion of very-low-density lipoprotein and secondarily from impairment in the removal of triacylglycerol-rich lipoproteins from the plasma . Hyperlipemia tends to disappear because of enhanced lipolytic activity and aggravation of the liver injury. With moderate alcohol consumption, the increase in high-density lipoprotein becomes the predominant feature. Its mechanism is multifactorial (increased hepatic secretion and increased extra-hepatic formation as well as decreased removal) and explains part of the enhanced cholesterol transport from tissues to bile. These changes contribute to, but do not fully account for, the effects on atherosclerosis and/or coronary heart disease attributed to moderate drinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitson KE, Weiner H: Symposium. Ethanol and acetaldehyde metabolism: Past, present and future. Alcohol Clin Exp Res 20:82A–92A, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Forsander OA, Maenpaa PH, Salaspuro MP: Influence of ethanol on the lactate/pyruvate and β-hydroxybutyrate/acetoacetate ratios in rat liver experiments. Acta Chem Scand 19: 1770–1771, 1965.

    Article  PubMed  CAS  Google Scholar 

  3. Lieber CS, Lefèvre A, Spritz N, et al: Difference in hepatic metabolism of long-and medium-chain fatty acids: The role of fatty acid chain length in the production of the alcoholic fatty liver. JClin Invest 46:1451–1460, 1967.

    CAS  Google Scholar 

  4. Nikkilä EA, Ojala K: Role of hepatic L-α-glycerolphosphate and triglyceride synthesis in production of fatty liver by ethanol. Proc Soc Exp Biol Med 113:2314–817, 1963.

    Google Scholar 

  5. Salaspuro MP, Shaw S, Jayatilleke E, et al: Attenuation of the ethanol induced hepatic redox changes after chronic alcohol consumption in baboons: Metabolic consequences in vivo and in vitro. Hepatology 1:33–38, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Domschke S, Domschke W, Lieber CS: Hepatic redox state: Attenuation of the acute effects of ethanol induced by chronic alcohol consumption. Life Sci 15:1327–1334, 1974.

    Article  PubMed  CAS  Google Scholar 

  7. Ryle PR, Chakraborty J, Thomson AD. The effect of methylene blue on the hepatocellular redox state and liver lipid content during chronic ethanol feeding in the rat. Biochem J 232:877–882, 1985.

    PubMed  CAS  Google Scholar 

  8. Quistorff B, Chance B, Takeda H: Two-and three-dimensional redox heterogeneity. Effects of anoxia and alcohol on lobular redox pattern, in Dutton LP, Leigh LS, Scarpa A (eds): Frontiers of Biological Energetics: Electrons to Tissues. New York, Academic Press, 1978, pp 1487–1497.

    Google Scholar 

  9. Jauhonen VP, Baraona E, Lieber CS, Hassinen IE: Dependence of ethanol-induced redox shift on hepatic oxygen tensions prevailing in vivo. Alcohol 2:163–167, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Jauhonen P, Baraona E, Miyakawa H, Lieber CS: Mechanism for the selective hepatotoxicity of ethanol. Alcohol Clin Exp Res 6:350–357, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Baraona E, Jauhonen P, Miyakawa H, Lieber CS: Zonal redox changes as a cause of selective perivenular hepatotoxicity of alcohol. Pharmacol Biochem Behav 96:306–315, 1983.

    CAS  Google Scholar 

  12. Lieber CS, DeCarli LM: Hepatic microsomal ethanol oxidizing system: In vitro characteristics and adaptive properties in vivo. J Biol Chem 245:2505–2512, 1970.

    PubMed  CAS  Google Scholar 

  13. Joly JG, Feinman L, Ishii H, Lieber CS: Effect of chronic ethanol feeding on hepatic microsomal glycerophosphate acyltransferase activity. J Lipid Res 14:337–343, 1973.

    PubMed  CAS  Google Scholar 

  14. Lamb RG, Wood CK, Fallon HJ: The effect of acute and chronic ethanol intake on hepatic glycerolipid biosynthesis in the hamster. J Clin Invest 63:14–20, 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Savolainen MJ, Baraona E, Pikkarainen P, et al: Hepatic triacylglycerol synthesizing activity during progression of alcoholic liver injury in the baboon. J Lipid Res 25:813–820, 1984.

    PubMed  CAS  Google Scholar 

  16. Day CP, James OFW, Brown ASM, et al: The activity of the metabolic form of hepatic phosphatidate phosphohydrolase correlates with the severity of alcoholic fatty liver in human beings. Hepatology 18:832–838, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Savolainen MJ: Stimulation of hepatic phosphatidate phosphohydrolase activity by a single dose of ethanol. Biochem Biophys Res Commun 75:511–518, 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Pritchard PH, Bowley M, Burditt SD, et al: The effects of acute ethanol feeding and of chronic benfluorex administration on the activities of some enzymes of glycerolipid synthesis in rat liver and adipose tissue. Biochem J 166:639–642, 1977.

    PubMed  CAS  Google Scholar 

  19. Simpson KJ, Venkatesan S, Martin A, et al: Effect of alcohol on the activity and subcellular distribution of phosphatidate phosphohydrolase in rat liver. Biochim Biophys Acta 1201:411–414, 1994.

    PubMed  Google Scholar 

  20. Fallon HJ, Lamb RG, Jamdar SC: Phosphatidate phosphohydrolase and the regulation of glycerolipid biosynthesis. Biochem Soc Trans 5:37–40, 1977.

    PubMed  CAS  Google Scholar 

  21. Lieber CS, Jones DP, DeCarli LM: Effects of prolonged ethanol intake: Production of fatty liver despite adequate diets. J Clin Invest 44:1009–1021, 1965.

    Article  PubMed  CAS  Google Scholar 

  22. Day CP, Yeaman SJ: The biochemistry of alcohol-induced fatty liver. Biochim Biophys Acta 1215:33–48, 1994.

    PubMed  CAS  Google Scholar 

  23. Ide T, Ontko JA: Increased secretion of very low density lipoprotein triglyceride following inhibition of long chain fatty acid oxidation in isolated rat liver. J Biol Chem 256:10247–10255, 1981.

    PubMed  CAS  Google Scholar 

  24. Tijburg LBM, Maquedano A, Bijleveld C, et al: Effects of ethanol feeding on hepatic lipid synthesis. Arch Biochem Biophys 267:568–579, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. O’Doherty PJA, Kuksis A: Stimulation of triacylglycerol synthesis by Z protein in rat liver and intestinal mucosa. FEBS Lett 60:256–258, 1975.

    Google Scholar 

  26. Gossett RE, Frolov AA, Roths JB, et al: Acyl-CoA binding proteins: Multiplicity and function. Lipids 31:895–918, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Cairns SR, Peters TJ: Biochemical analysis of hepatic lipid in alcoholic and diabetic and control subjects: Clin Sci 65645–652, 1983.

    Google Scholar 

  28. Lefèvre AF, DeCarli LM, Lieber CS: Effect of ethanol on cholesterol and bile acid metabolism. J Lipid Res 13:48–55, 1972.

    PubMed  Google Scholar 

  29. Field FJ, Boydstun JS, LaBrecque DR: Effect of chronic ethanol ingestion on hepatic and intestinal acyl coenzyme A: Cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl co-enzyme A reductase in the rat. Hepatology 5:133–138, 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Maruyama S, Murawaki Y, Hirayama C: Effects of chronic ethanol administration on hepatic cholesterol and bile acid synthesis in relation to serum high density lipoprotein cholesterol in rats. Res Commun Chem Pathol Pharmcol 53:3–21, 1986.

    CAS  Google Scholar 

  31. Lakshman MR, Veech RL: Short-term and long-term effects of ethanol administration in vivo on rat liver HMG-CoA reductase and cholesterol 7α-hydroxylase activities. J Lipid Res 18:325–330, 1977.

    Google Scholar 

  32. Shevchuk O, Baraona E, Ma X-L, Lieber CS: Gender differences in the response of hepatic fatty acids and cytosolic fatty acid-binding capacity to alcohol consumption in rats. Proc Soc ExpBiolMed 198:584–590, 1991.

    CAS  Google Scholar 

  33. Ma X, Baraona E, Lieber CS: Alcohol consumption enhances fatty acid ω-oxidation, with a greater increase in males than in female rats. Hepatology 18:1247–1253, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Ma X, Baraona E, Goozner N, Lieber CS: Increased vulnerability of women to alcoholic liver injury as indicated by the lack of dicarboxylic aciduria after alcohol consumption. Alcohol Clin ExpRes 19(Suppl):97A 1995.

    Google Scholar 

  35. Spritz N, Lieber CS: Decrease of ethanol-induced fatty liver by ethyl α-p-chlorophenox-yisobutyrate. Proc Soc Exp Biol Med 121:147–149, 1966.

    PubMed  CAS  Google Scholar 

  36. Kaikaus RM, Chan WK, Ortiz de Montellana PR, Bass NM: Mechanisms of regulation of liver fatty acid-binding protein. Mol Cell Biochem 123:93–100, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Pignon JP, Bailey NC, Baraona E, Lieber CS: Fatty acid binding protein: A major contributor to the ethanol-induced increase in liver cytosolic proteins in the rat. Hepatology 7:865–871, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Lieber CS: Women and alcohol: Gender differences in metabolism and susceptibility, in Wilsnack RW, Wilsnack SC (eds): Gender and Alcohol. Piscataway, NJ Rutgers Center of Alcohol Studies, 1997, pp 77–89.

    Google Scholar 

  39. Ishii H, Joly J-G, Lieber CS: Effect of ethanol on the amount and enzyme activities of hepatic rough and smooth microsomal membranes. Biochim Biophys Acta 291:411–420, 1973.

    Article  PubMed  CAS  Google Scholar 

  40. Uthus EO, Skurdal DN, Cornatzer WE: Effect of ethanol ingestion on choline phospho-transferase and phosphatidyl ethanolamine methyltransferase activities in liver micro-somes. Lipids 11:641–644, 1976.

    Article  PubMed  CAS  Google Scholar 

  41. Lieber CS, Robins SJ, Leo MA: Hepatic phosphatidylethanolamine methyltransferase is decreased by ethanol and increased by phosphatidylcholine Alcohol Clin Exp Res 18:592–595, 1994.

    Article  PubMed  CAS  Google Scholar 

  42. Lieber CS, Spritz N, DeCarli LM: Role of dietary, adipose and endogenously synthesized fatty acids in the pathogensis of the alcoholic fatty liver. J Clin Invest 45:51–62, 1966.

    Article  PubMed  CAS  Google Scholar 

  43. Lieber CS, Spritz N: Effect of prolonged ethanol intake in man: Role of dietary, adipose, and endogenously synthesized fatty acids in the pathogenesis of the alcoholic fatty liver. J Clin Invest 45:1400–1411, 1966.

    Article  PubMed  CAS  Google Scholar 

  44. Mendenhall CL, Bradford RH, Furman RH: Effect of ethanol on fatty acid composition of hepatic phosphatidylcholine and phosphatidylethanolamine and on microsomal fatty acyl-CoA: lysophosphatide transferase activities in rats fed corn oil or coconut oil. Biochim Biophys Acta 187:510–519, 1969.

    PubMed  CAS  Google Scholar 

  45. Nervi AM, Peluffo RO, Brenner RR, Leikin AI: Effect of ethanol administration on fatty acid desaturation. Lipids 15:263–268, 1980.

    Article  PubMed  CAS  Google Scholar 

  46. Rao GA, Lew G, Larkin EC: Alcohol ingestion and levels of hepatic fatty acid synthetase and stearoyl-CoA desaturase activities in rats. Lipids 19:151–153, 1984.

    Article  PubMed  CAS  Google Scholar 

  47. Wang DL, Reitz RC: Ethanol ingestion and polyunsaturated fatty acids: effects on the acyl-CoA desaturases. Alcohol Clin Exp Res 7:220–226, 1983.

    Article  PubMed  CAS  Google Scholar 

  48. Nakamura MT, Tang AB, Villanueva J, et al: Reduced tissue arachidonic acid concentration with chronic ethanol feeding in miniature pigs. Am J Clin Nutr 56:467–474, 1992.

    PubMed  CAS  Google Scholar 

  49. Kamisaka K, Maezawa H, Inagaki T, Okano K: A low molecular weight binding protein for organic anions (Z protein) from human hepatic cytosol: Purification and quantitation. Hepatology 1:221–227, 1981.

    Article  PubMed  CAS  Google Scholar 

  50. Mavrelis PG, Ammon HV, Gleysteen JJ, et al: Hepatic free fatty acids in alcoholic liver disease and morbid obesity. Hepatology 326–231, 1983.

    Google Scholar 

  51. Nomura F, Lieber CS: Binding of acetaldehyde to rat liver microsomes: Enhancement after chronic alcohol consumption. Biochem Biophys Res Commun 100:131–137, 1981.

    Article  PubMed  CAS  Google Scholar 

  52. Steinbrecher UP, Fisher MIL, Witztun JL, Curtiss LK: Immunogenicity of homologous low density lipoproteins after methylation, ethylation, acetylation, or carbamylation: Generation of antibodies specific for derivatized lysine. J Lipid Res 25:1109–1116, 1984.

    PubMed  CAS  Google Scholar 

  53. Israel Y, Hurwitz E, Niemela O, Amon R: Monoclonal and polyclonal antibodies against acetaldehyde-containing epitopes in acetaldehyde-protein adducts. Proc Natl Acad Sci USA 83:7923–7927, 1986.

    Article  PubMed  CAS  Google Scholar 

  54. Behrens UH, Hoemer M, Lasker JM, Lieber CS: Formation of acetaldehyde adducts with ethanol-inducible P450IIE1 in vivo. Biochem Biophys Res Commun 154:584–590, 1988.

    Article  PubMed  CAS  Google Scholar 

  55. Moncada C, Torres G, Varghese E, et al: Ethanol-derived immunoreactive species formed by free radical mechanisms. Mol Pharmacol 46:786–791, 1994.

    PubMed  CAS  Google Scholar 

  56. Niemela O, Parkkila S, Ylä-Herttuala S, et al: Covalent protein adducts in the liver as a result of ethanol metabolism and lipid peroxidation. Lab Invest 70:537–546, 1994.

    PubMed  CAS  Google Scholar 

  57. Lane BP, Lieber CS: Ultrastructural alterations in human hepatocytes following ingestion of ethanol with adequate diets. Am J Pathol 49:593–603, 1966.

    PubMed  CAS  Google Scholar 

  58. Rubin E, Beattie DS, Toth A, Lieber CS: Structural and functional effects of ethanol on hepatic mitochondria. Fed Proc 31:131–140, 1972.

    PubMed  CAS  Google Scholar 

  59. Matsuzaki S, Lieber CS: Increased susceptibility of hepatic mitochondria to the toxicity of acetaldehyde after chronic ethanol consumption. Biochem Biophys Res Commun 75:1059–1065, 1977.

    Article  PubMed  CAS  Google Scholar 

  60. Cederbaum AI, Lieber CS, Beattie DS, Rubin E: Effect of chronic ethanol ingestion on fatty acid oxidation by hepatic mitochondria. J Biol Chem 250:5122–5129, 1975.

    PubMed  CAS  Google Scholar 

  61. Lefèvre A, Adler H, Lieber CS: Effects of ethanol on ketone metabolism. J Clin Invest 49:1775–1782, 1970.

    Article  PubMed  Google Scholar 

  62. Guzmán M, Geelen MJH: Effects of ethanol feeding on the activity and regulation of hepatic carnitine palmitoyltransferase. Arch Biochem Biophys 267:580–588, 1988.

    Article  PubMed  Google Scholar 

  63. Zentella de Piña M, Villalobos-Molina R, Saavedra-Molina A, et al: Effects of moderate chronic ethanol consumption on rat liver mitochondrial fractions. Alcohol 6:3–7, 1989.

    Article  PubMed  Google Scholar 

  64. Quintanilla ME, Tampier L: Ethanol intake: Effect on liver and brain mitochondrial function and acetaldehyde oxidation. Alcohol 9:375–380, 1992.

    Article  PubMed  CAS  Google Scholar 

  65. Arai M, Gordon ER, Lieber CS: Decreased cytochrome oxidase activity in hepatic mitochondria after chronic ethanol consumption and the possible role of decreased cytochrome aa3 content and changes in phospholipids. Biochim Biophys Acta 797:320–327, 1984.

    PubMed  CAS  Google Scholar 

  66. Hasumura Y, Teschke R, Lieber CS: Characteristics of acetaldehyde oxidation in rat liver mitochondria. J Biol Chem 251:4908–4913, 1976.

    PubMed  CAS  Google Scholar 

  67. Lieber CS, Baraona E, Hernández-Muñoz R, et al: Impaired oxygen utilization. A new mechanism for the hepatotoxicity of ethanol in sub-human primates. J Clin Invest 83:1682–1690, 1989.

    Article  PubMed  CAS  Google Scholar 

  68. Lundquist E, Tygstrup N, Winkler K, et al: Ethanol metabolism and production of free acetate in the human liver. J Clin Invest 41:955–961, 1962.

    Article  PubMed  CAS  Google Scholar 

  69. Fernández-Checa J, Garcia-Ruiz C, Ookhtens M, Kaplowitz N: Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J Clin Invest 87:397–405, 1991.

    Article  PubMed  Google Scholar 

  70. Garcia-Ruiz C, Colell A, Morales A, et al: Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kB: Studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol 48:825–834, 1995.

    PubMed  CAS  Google Scholar 

  71. Shaw S, Rubin KP, Lieber CS: Depressed hepatic glutathione and increased diene conjugates in alcoholic liver disease. Evidence of lipid peroxidation. Dig Dis Sci 28:585–589, 1983.

    Article  PubMed  CAS  Google Scholar 

  72. Kukielka E, Dicker E, Cederbaum AI: Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch Biochem Biophys 309:377–386, 1994.

    Article  PubMed  CAS  Google Scholar 

  73. Chin JH, Goldstein DB: Effects of low concentration of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol Pharmacol 13:435–441, 1977.

    PubMed  CAS  Google Scholar 

  74. Chin JH, Parson LM, Goldstein DR: Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochem Biophys Acta 513:358–363, 1978.

    Article  PubMed  CAS  Google Scholar 

  75. Polokoff MA, Simon TJ, Harris RA, et al: Chronic ethanol increases liver plasma membrane fluidity. Biochemistry 24:3114–3120, 1985.

    Article  PubMed  CAS  Google Scholar 

  76. Yamada S, Lieber CS: Decrease in microviscosity and cholesterol content of rat liver plasma membranes after chronic ethanol feeding. J Clin Invest 74:2285–2289, 1984.

    Article  PubMed  CAS  Google Scholar 

  77. Kim CI, Leo MA, Lowe N, Lieber CS: Effects of vitamin A and ethanol on liver plasma membrane fluidity. Hepatology 8:735–741, 1988.

    Article  PubMed  CAS  Google Scholar 

  78. Kikuchi T, Kako KJ: Metabolic effects of ethanol on the rabbit heart. Circulation Res 26:625–634, 1970.

    PubMed  CAS  Google Scholar 

  79. Vasdev SC, Subrahmanyam D, Chakravarti RN, Wahi PL: Effect of chronic ethanol feeding on the major lipids of red blood cells, liver and heart of Rhesus monkey. Biochim Biophys Acta 369:323–330, 1974.

    CAS  Google Scholar 

  80. Liau DF, Hashim SA, Pierson RN, Ryan SF: Alcohol-induced lipid change in the lung. J Lipid Res 22:680–686, 1981.

    PubMed  CAS  Google Scholar 

  81. Wilson JS, Colley PW, Sasula L, et al: Alcohol causes a fatty pancreas. A rat model of ethanol-induced pancreatic steatosis. Alcohol Clin Exp Res 6:117–121, 1982.

    Article  PubMed  CAS  Google Scholar 

  82. Goodman DS, Deykin D: Fatty acid ethyl ester formation during ethanol metabolism in vivo. Proc Soc Exp BiolMed 113:65–67, 1963.

    CAS  Google Scholar 

  83. Lange LG, Bergmann SR, Sobel BE: Identification of fatty acid ethyl esters as products of rabbit myocardial ethanol metabolism. J Biol Chem 256:12968–12973, 1981.

    PubMed  CAS  Google Scholar 

  84. Laposata EA, Lange LG: Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–499, 1986.

    Article  PubMed  CAS  Google Scholar 

  85. Mogelson S, Lange LG: Nonoxidative ethanol metabolism in rabbit myocardium: Purification to homogeneity of fatty acyl ethyl ester synthase. Biochemistry 23:4075–4071, 1984.

    Article  PubMed  CAS  Google Scholar 

  86. Doyle KM, Cluette-Brown JE, Dube DM, et al: Fatty acid ethyl esters in the blood as markers for ethanol intake. JAMA 276:1152–1156, 1994.

    Article  Google Scholar 

  87. Laposata M, Szczepiorkowski ZM, Brown, JE: Fatty acid ethyl esters: Non-oxidative metabolites of ethanol. Prostaglandins Leukot Essent Fatty Acids 52:87–91, 1995.

    Article  PubMed  CAS  Google Scholar 

  88. Szczepiorkowski ZM, Dickersin GR, Laposata M: Fatty acid ethyl esters decrease human hepatoblastoma cell proliferation and protein synthesis. Gastroenterology 108:515–522, 1995.

    Article  PubMed  CAS  Google Scholar 

  89. Lange LG, Sobel BE: Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J Clin Invest 72:724–731, 1983.

    Article  PubMed  CAS  Google Scholar 

  90. Haber PS, Wilson JS, Apte MV, Pirola RC: Fatty acid ethyl esters increase rat pancreatic lysosomal fragility. J Lab Clin Med 121:759–764, 1993.

    PubMed  CAS  Google Scholar 

  91. Laposata EA, Harrison EH, Hedberg EB: Synthesis and degradation of fatty acid ethyl esters by culture hepatoma cells exposed to ethanol. J Biol Chem 265:9688–9693, 1990.

    PubMed  CAS  Google Scholar 

  92. Spector AA: Fatty acid ethyl esters: insight of intoxication? Gastroenterology 108:605–607, 1995.

    Article  PubMed  CAS  Google Scholar 

  93. Alling C, Gustavsson L, Änggard E: An abnormal phospholipid in rat organs after ethanol treatment. FEBS Lett 152:24–28, 1983.

    Article  PubMed  CAS  Google Scholar 

  94. Sørensen TIA, Orholm M, Bentsen KD, et al: Prospective evaluation of alcohol abuse and alcoholic liver injury in men as predictors of development of cirrhosis. Lancet 2:241–244, 1984.

    Article  PubMed  Google Scholar 

  95. Lieber CS, Jones DP, Mendelson J, DeCarli LM: Fatty liver, hyperlipemia and hyperuricemia produced by prolonged alcohol consumption, despite adequate dietary intake. Trans Assoc Am Physicians 76:289–300, 1963.

    CAS  Google Scholar 

  96. Lieber CS, Rubin E: Alcoholic fatty liver in man on a high protein and low fat diet. Am J Med 44:200–207, 1968.

    Article  PubMed  CAS  Google Scholar 

  97. Rubin E, Lieber CS: Alcohol induced hepatic injury in non-alcoholic volunteers. N Engl J Med 278:869–876, 1968.

    Article  PubMed  CAS  Google Scholar 

  98. Brodie BB, Butler WM, Horning MG, et al: Alcohol-induced triglyceride deposition in liver through derangement of fat transport. Am J Clin Nutr 9:432–435, 1961.

    CAS  Google Scholar 

  99. Mallov S: Effect of ethanol intoxication on plasma free fatty acids in the rat. J Stud Alcohol 22:250–253, 1961.

    CAS  Google Scholar 

  100. Rebouças G, Isselbacher KJ: Studies on the pathogenesis of the ethanol-induced fatty liver. I. Synthesis and oxidation of fatty acids by the liver. J Clin lnvest 40:1355–1362, 1961.

    Article  Google Scholar 

  101. Kalant H, Khanna JM, Seymour F, Loth J: Acute alcoholic fatty liver. Metabolism or stress. Biochem Pharmacol 24:431–434, 1975.

    Article  PubMed  CAS  Google Scholar 

  102. DeCarli LM, Lieber CS: Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr 91:331–336, 1967.

    PubMed  CAS  Google Scholar 

  103. Lieber CS, DeCarli LM: Quantitative relationship between amount of dietary fat and severity of alcoholic fatty liver. Am J Nutr 23:474–478, 1970.

    CAS  Google Scholar 

  104. Lieber CS, DeCarli LM: An experimental model of alcohol feeding and liver injury in the baboon. J Med Primatol 3:153–163, 1974.

    PubMed  CAS  Google Scholar 

  105. Wolfe BM, Havel JR, Marliss EB, et al: Effect of a 3-day fast and of ethanol on splanchnic metabolism of FFA, amino acids, and carbohydrates in healthy young men. J Clin Invest 57:329–340, 1976.

    Article  PubMed  CAS  Google Scholar 

  106. Baraona E, Lieber CS: Effects of chronic ethanol feeding on serum lipoprotein metabolism in the rat. J Clin Invest 49:769–778, 1970.

    Article  PubMed  CAS  Google Scholar 

  107. Baraona E, Pirola R, Lieber CS: The pathogenesis of postprandial hyperlipemia in rats fed ethanol-containing diets. J Clin Invest 52:296–303, 1973.

    Article  PubMed  CAS  Google Scholar 

  108. Baraona E, Leo MA, Borowsky SA, Lieber CS: Pathogenesis of alcohol-induced accumulation of protein in the liver. J Clin Invest 60:546–554, 1977.

    Article  PubMed  CAS  Google Scholar 

  109. Matsuda Y, Baraona E, Salaspuro M, Lieber CS: Effects of ethanol on liver microtubules and Golgi apparatus. Possible role in altered hepatic secretion of plasma protein. Lab Invest 41:455–463, 1979.

    PubMed  CAS  Google Scholar 

  110. Baraona E, Matsuda Y, Pikkarainen P, Lieber CS: Effects of ethanol on hepatic protein secretion and microtubules. Possible mediation by acetaldehyde. Curr Alcohol 8:421–434, 1981.

    PubMed  CAS  Google Scholar 

  111. Jennett RB, Sorrell MF, Saffari-Fard A, et al: Preferential covalent binding of acetaldehyde to the a-chain of purified rat liver tubulin. Hepatology 9:57–62, 1989.

    Article  PubMed  CAS  Google Scholar 

  112. Smith SL, Jennett RB, Sorrell MF, Tuma DJ: Acetaldehyde substoichiometrically inhibits bovine neurotubulin polymerization. J Clin lnvest 84:337–341, 1989.

    Article  CAS  Google Scholar 

  113. Lieber CS, Leevy CM, Stein SW, et al: Effect of ethanol on plasma free fatty acids in man. J Lab Clin Med 59:826–832, 1962.

    PubMed  CAS  Google Scholar 

  114. Jauhonen VP, Hassinen IE: Metabolic and hormonal changes during intravenous infusion of ethanol, acetaldehyde and acetate in normal and adrenalectomized rats. Arch Biochem Biophys 191:358–366, 1978.

    Article  PubMed  CAS  Google Scholar 

  115. Jones DP, Perman ES, Lieber CS: Free fatty acid turnover and triglyceride metabolism after ethanol ingestion in man. J Lab Clin Med 66:804–813, 1965.

    PubMed  CAS  Google Scholar 

  116. Crouse JR, Gerson CS, DeCarli LM, Lieber CS: Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 2:509–512, 1968.

    Google Scholar 

  117. Tsukamoto H, French SW, Reidelberger RD, Largman C: Cyclical pattern of blood alcohol levels during continuous intragastric ethanol infusion in rats. Alcohol Clin Exp Res 9:31–37, 1985.

    Article  PubMed  CAS  Google Scholar 

  118. Tsukamoto H, French SW, Benson N, et al: Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology 5:224–232, 1985.

    Article  PubMed  CAS  Google Scholar 

  119. French SW, Miyamoto K, Tsukamoto H: Ethanol-induced hepatic fibrosis in the rat: Role of the amount of dietary fat. Alcohol Clin Exp Res 10(Supp1):13S–19S, 1886.

    Google Scholar 

  120. Nanji AA, French SW: Dietary linoleic acid is required for development of experimentally induced alcoholic liver injury. Life Sci 44:223–227, 1989.

    Article  PubMed  CAS  Google Scholar 

  121. Nanji AA, Mendenhall CL, French SW: Beef fat prevents alcoholic liver disease in the rat. Alcohol Clin Exp Res 13:15–19, 1989.

    Article  PubMed  CAS  Google Scholar 

  122. Nanji AA, French SW: Relationship between pork consumption and cirrhosis. Lancet 1:681–683, 1985.

    Article  PubMed  CAS  Google Scholar 

  123. Nanji AA, French SW: Dietary factors and alcoholic cirrhosis. Alcohol Clin Exp Dis 10:271–273, 1986.

    Article  CAS  Google Scholar 

  124. French SW: Nutrition in the pathogenesis of alcoholic liver disease. Alcohol Alcohol 28:97–100, 1992.

    Google Scholar 

  125. Nanji AA, Sadrzadeh SMH, Yang EK, et al: Dietary saturated fatty acids: A novel treatment for alcoholic liver disease. Gastroenterology 109:547–554, 1995.

    Article  PubMed  CAS  Google Scholar 

  126. Lakshman MR, Chirtel SJ, Chambers LL: Roles of ω3 fatty acids and chronic ethanol in the regulation of plasma and liver lipids and plasma apoproteins A1 and E in rats. J Nutr 118:1299–1303, 1988.

    PubMed  CAS  Google Scholar 

  127. Israel Y, Kalant H, Orrego, et al: Experimental alcohol induced hepatic necrosis: Suppression by propylthiouracil. Proc Natl Acad Sci USA 72:1137–1141, 1975.

    Article  PubMed  CAS  Google Scholar 

  128. French SW, Benson NC, Sun PS: Centrilobular necrosis induced by hypoxia in chronic ethanol-fed rats. Hepatology 4:912–917, 1984.

    Article  PubMed  CAS  Google Scholar 

  129. Bredfelt JE, Riley EM, Groszman RJ: Compensatory mechanisms in response to an elevated hepatic oxygen consumption in chronically ethanol-fed rats. Am J Physiol 248: G507-G511, 1985.

    Google Scholar 

  130. Shaw S, Heller EA, Friedman HS, et al: Increased hepatic oxygenation following ethanol administration in the baboon. Proc Soc Exp Biol Med 156:509–513, 1977.

    PubMed  CAS  Google Scholar 

  131. Tsukamoto H, Xi XP: Incomplete compensation of enhanced hepatic oxygen consumption in rats with alcoholic centrilobular liver necrosis. Hepatology 9:302–306, 1989.

    Article  PubMed  CAS  Google Scholar 

  132. Miyamoto K, French SW: Hepatic adenine nucleotide metabolism measured in vivo in rats fed ethanol and a high fat-low protein diet. Hepatology 8:53–60, 1988.

    Article  PubMed  CAS  Google Scholar 

  133. Takahashi H, Geoffrion Y, Butler KW, French SW: In vivo hepatic energy metabolism during progression of alcoholic liver disease: A noninvasive 31P nuclear magnetic resonance study in rats. Hepatology 11:65–73, 1990.

    Article  PubMed  CAS  Google Scholar 

  134. Helzberg JH, Brown MS, Smith DJ, et al: Metabolic state of the rat liver with ethanol: Comparison of in vivo 31phosphorus nuclear magnetic resonance spectroscopy with freeze clamp assessment. Hepatology 7:83–88, 1987.

    Article  PubMed  CAS  Google Scholar 

  135. Suematsu T, Matsumura T, Sato N, et al: Lipid peroxidation in alcoholic liver disease in humans. Alcohol Clin Exp Res 5:427–430, 1981.

    Article  PubMed  CAS  Google Scholar 

  136. DiLuzio NR: Prevention of the acute ethanol-induced fatty liver by the simultaneous administration of antioxidants. Life Sci 3:113–118, 1964.

    Article  CAS  PubMed  Google Scholar 

  137. Comporti M, Hartman A, DiLuzio NR: Effect of in vivo and in vitro ethanol administration on liver lipid peroxidation. Lab Invest 16:616–624, 1967.

    PubMed  CAS  Google Scholar 

  138. MacDonald CM: The effects of ethanol on hepatic lipid peroxidation and on the activities of glutathione reductase and peroxidase. FEBS Lett 25:227–230, 1973.

    Article  Google Scholar 

  139. Reitz RC: A possible mechanism for the peroxidation of lipids due to chronic ethanol ingestion. Biochim Biophys Acta 380:145–154, 1975.

    PubMed  CAS  Google Scholar 

  140. Shaw S, Jayatilleke E, Ross WA, Lieber CS: Ethanol-induced lipid peroxidation: Potentiation by long-term alcohol feeding and attenuation by methionine. J Lab Clin Med 98:417–424, 1981.

    PubMed  CAS  Google Scholar 

  141. Lieber CS, Leo MA, Aleynik SI, et al: Polyenylphosphatidylcholine decreases alcohol-induced oxidative stress in the baboon. Alcohol Clin Exp Res 21:375–379, 1997.

    PubMed  CAS  Google Scholar 

  142. Lieber CS, DeCarli LM: Study of agents for the prevention of the fatty liver produced by prolonged alcohol intake. Gastroenterology 50:316–322, 1966.

    PubMed  CAS  Google Scholar 

  143. Nanji AA, Zhao S, Lamb RG, et al: Changes in microsomal phospholipases and arachidonic acid in experimental alcoholic liver injury: Relationship to cytochrome P450 2E1 induction and conjugated diene formation. Alcohol Clin Exp Res 17:598–603, 1993.

    Article  PubMed  CAS  Google Scholar 

  144. Nanji AA, Khwaja S, Tahan SR, Sadrzadeh SMH: Plasma levels of a novel noncycloox-ygenase-derived prostanoid (8-isoprostane) correlate with severity of liver injury in experimental alcoholic liver disease. J Pharmacol Exp Ther 269:1280–1285, 1994.

    PubMed  CAS  Google Scholar 

  145. Nanji AA, Khettry U, Sadrzadeh SMH, Yamanaka T: Severity of liver injury in experimental alcoholic liver disease. Correlation with plasma endotoxin, prostaglandin E2, leukotriene B4, and thromboxane B2. Am Jpathol 142:367–373, 1993.

    CAS  Google Scholar 

  146. Nanji AA, Khwaja S, Sadrzadeh SMH: Eicosanoid production in experimental alcoholic liver disease is related to vitamin E levels and lipid peroxidation. Mol Cell Biochem 140:85–89, 1994.

    Article  PubMed  CAS  Google Scholar 

  147. Müller A, Sies H: Role of alcohol dehydrogenase activity and of acetaldehyde in ethanol-induced ethane and pentane production by isolated perfused rat liver. Biochem J 206:353–156, 1982.

    Google Scholar 

  148. Savolainen E-R, Leo MA, Timpl R, Lieber CS: Acetaldehyde and lactate stimulate collagen synthesis in cultured baboon myofibroblasts. Gastroenterology 87:777–787, 1984.

    PubMed  CAS  Google Scholar 

  149. Moshage H, Casini A, Lieber CS: Acetaldehyde selectively stimulates collagen production in cultured rat liver fat-storing cells but not in hepatocytes. Hepatology 12:511–518, 1990.

    Article  PubMed  CAS  Google Scholar 

  150. Lee KS, Buck M, Houglum K, Chojkier M: Activation of hepatic stellate cells by TGFα and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 96:2461–2468, 1995.

    Article  PubMed  CAS  Google Scholar 

  151. Lieber CS, Robins SJ, Li J, et al: Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon. Gastroenterology 106:152–159, 1994.

    PubMed  CAS  Google Scholar 

  152. Navder KP, Baraona E, Lieber CS: Polyenylphosphatidylcholine (PPC) attenuates alcohol-induced fatty liver and hyperlipemia in rats. J Nutr 127:1800–1806, 1997.

    PubMed  CAS  Google Scholar 

  153. Navder KP, Baraona E, Lieber CS: Restoration of ethanol-induced mitochondrial dysfunction by polyenylphosphatidylcholine (PPC) in rats. FASEB J 11:A383, 1997.

    Google Scholar 

  154. Losowsky MS, Jones DP, Davidson CS, Lieber CS: Studies of alcoholic hyperlipemia and its mechanism. Am J Med 35:794–803, 1963.

    Article  PubMed  CAS  Google Scholar 

  155. Chait A, February AE, Mancini M, Lewis BL: Clinical and metabolic study of alcoholic hyperlipidemia. Lancet 2:62–64, 1972.

    Article  PubMed  CAS  Google Scholar 

  156. CasteIli WP, Gordon T, Hjortland MC, et al: Alcohol and blood lipids. Lancet 2:153–155, 1977.

    Article  Google Scholar 

  157. Böttiger LE, Carlson LA, Hultman EM, Romanus V: Serum lipids in alcoholics Acta Med Scand 199:357–361, 1976.

    PubMed  Google Scholar 

  158. Marzo S, Ghirardi P, Sardini D, et al: Serum lipids and total fatty acids in chronic alcoholic liver disease at different states of cell damage. Klin Wochen 48:949–950, 1970.

    Article  CAS  Google Scholar 

  159. Papadopolous NM, Charles MA: Serum lipoprotein patterns in liver disease. Proc Soc Exp BiolMed 134:797–799, 1970.

    Google Scholar 

  160. Day RC, Harry DS, Owen JS, et al: Lecithin-cholesterol acyltransferase and the lipoprotein abnormalities of parenchymal liver disease. Clin Sci 56:575–583, 1979.

    PubMed  CAS  Google Scholar 

  161. Sabesin SM, Hawkins HL, Kuiken L, et al: Abnormal plasma lipoproteins and lecithin-cholesterol acyltransferase deficiency in alcoholic liver disease. Gastroenterology 72:510–518, 1977.

    PubMed  CAS  Google Scholar 

  162. Nestel PJ, Tada N, Fidge NH: Increased catabolism of high density lipoprotein in alcoholic hepatitis. Metabolism 29:101–104, 1980.

    Article  PubMed  CAS  Google Scholar 

  163. Weidman SW, Ragland JB, Sabesin SM: Plasma lipoprotein composition in alcoholic hepatitis: Accumulation of apolipoprotein E-rich high density lipoprotein and preferential reappearance of “light”-HDL during partial recovery. J Lipid Res 23:556–569, 1982.

    PubMed  CAS  Google Scholar 

  164. Jones DP, Losowsky MS, Davidson CS, Lieber CS: Effects of ethanol on plasma lipids in man. J Lab Clin Med 62:675–682, 1963.

    PubMed  CAS  Google Scholar 

  165. Belfrage P, Berg B, Cronholm T, et al: Prolonged administration to ethanol to young, healthy volunteers: Effects on biochemical, morphological and neurophysiological parameters. Acta Med Scand [Suppl] 552:1–44, 1973.

    CAS  Google Scholar 

  166. Avogaro P, Cazzolato G: Changes in the composition and physico-chemical characteristics of serum lipoproteins during ethanol-induced lipemia in alcoholic subjects. Metabolism 24:1231–1242, 1975.

    Article  PubMed  CAS  Google Scholar 

  167. Friedman M, Rosenman RH, Byers SO: Effect of moderate ingestion of alcohol upon serum triglyceride responses of normo-hyperlipemic subjects. Proc Soc Exp Biol Med 120:696–698, 1965.

    PubMed  CAS  Google Scholar 

  168. Taskinen M-R, Nikkilà EA: Nocturnal hypertriglyceridemia and hyperinsulinemia following moderate evening intake of alcohol. Acta Med Scand 202:173–177, 1997.

    Google Scholar 

  169. Schapiro RH, Scheig RL, Drummey GD, et al: Effect of prolonged ethanol ingestion on transport and metabolism of lipids in man. N Engl J Med 272:610–615, 1965.

    Article  PubMed  CAS  Google Scholar 

  170. Belfrage P, Berg B, Hagerstrand I, et al: Alterations of lipid metabolism in healthy volunteers during long-term ethanol intake. Eur J Clin Invest 7:127–131, 1977.

    Article  PubMed  CAS  Google Scholar 

  171. Contaldo F, D’Arrigo E, Carandente V, et al: Short-term effects of moderate alcohol consumption on lipid metabolism and energy balance in normal men. Metabolism 38:166–171, 1989.

    Article  PubMed  CAS  Google Scholar 

  172. Glueck CJ, Hogg E, Allen C, Gartside PS: Effects of alcohol ingestion on lipids and lipoproteins in normal men: Isocaloric metabolic studies. Am J Clin Nutr 33:2287–2293, 1980.

    PubMed  CAS  Google Scholar 

  173. Talbot GD, Keating BM: Effects of preprandial whiskey on postalimentary lipemia. Geriatrics 17:802–808, 1962.

    Google Scholar 

  174. Barboriak JJ, Meade RC: Enhancement of alimentary lipemia by preprandial alcohol. Am J MedSci 255:245–251, 1968.

    CAS  Google Scholar 

  175. Superko HR Effects of acute and chronic alcohol consumption on postprandial lipemia in healthy normotriglyceridemic men. Am J Cardiol 69:701–704, 1992.

    Google Scholar 

  176. Wilson DE, Schreibman PH, Brewster AC, Arky RA: The enhancement of alimentary lipemia by ethanol in man. J Lab Clin Med 75:264–274, 1970.

    PubMed  CAS  Google Scholar 

  177. Barboriak JJ, Hogan WJ: Preprandial drinking and plasma lipids in man. Atherosclerosis 4:323–325, 1976.

    Article  Google Scholar 

  178. Borowsky SA, Perlow W, Baraona E, Lieber CS: Relationship of alcoholic hypertriglyceridemia to stage of liver disease and dietary lipid. Dig Dis Sci 25:22–27, 1980.

    Article  PubMed  CAS  Google Scholar 

  179. Avgerinos A, Chu P, Greenfield C, et al: Plasma lipid and lipoprotein response to fat feeding in alcoholic liver disease. Hepatology 3:349–355, 1983.

    PubMed  CAS  Google Scholar 

  180. Schneider J, Panne E, Braun H, et al: Ethanol-induced hyperlipoproteinemia. Crucial role of preceding ethanol intake in the removal of chylomicrons. J Lab Clin Med 101:114–122, 1983.

    PubMed  CAS  Google Scholar 

  181. Lewis B, Chait A, Simmons P: Lipid abnormalities in alcoholism and chronic renal failure. Adv Exp Biol Med 38:155–159, 1973.

    CAS  Google Scholar 

  182. Janus ED, Lewis B: Alcohol and abnormalities of lipid metabolism. Clin Endocrinol Metab 7:321–332, 1978.

    Article  PubMed  CAS  Google Scholar 

  183. Mendelson JH, Mello NK: Alcohol-induced hyperlipidemia and beta lipoproteins. Science 180:1372–1374, 1973.

    Article  PubMed  CAS  Google Scholar 

  184. Ginsberg H, Olefsky J, Farquhar JW, Reaven GM: Moderate ethanol ingestion and plasma triglyceride levels. Ann Intern Med 80:143–149, 1974.

    PubMed  CAS  Google Scholar 

  185. Debry G, Mejean L, Max JP, et al: Effects of alcohol intake on several metabolic parameters in primary hyperlipoproteinemia. In Avogaro P, Sirtori CR, Tremoli F (eds): Metabolic Effects of Alcohol. Amsterdam, The Netherlands, Elsevier/North Holland Biomedical Press, 1979, pp 227–234.

    Google Scholar 

  186. Crouse JR, Grundy SM: Effects of alcohol on plasma lipoproteins and cholesterol and triglyceride metabolism in man. J Lipid Res 25:486–496, 1984.

    PubMed  CAS  Google Scholar 

  187. Valimaki M, Halmesuaki E, Keso L, et al: Serum lipids and lipoproteins in alcoholic women during pregnancy. Metabolism 39:486–493, 1990.

    Article  PubMed  CAS  Google Scholar 

  188. DeGennes JL, Thomopoulus P, Truffert J, Labrouse de Tregomain B: Hyperlipémies dépendantes de l’alcool. Nutr Metabol 14:141–158, 1972.

    CAS  Google Scholar 

  189. Lindenbaum J, Lieber CS: Effects of chronic ethanol administration on intestinal absorption in man in the absence of nutritional deficiency. Ann NY Acad Sci 252:228–234, 1975.

    Article  PubMed  CAS  Google Scholar 

  190. Carter EA, Drummey GD, Isselbacher KJ: Ethanol stimulates triglyceride synthesis by the intestine. Science 174:1245–1247, 1971.

    Article  PubMed  CAS  Google Scholar 

  191. Baraona E, Pirola RC, Lieber CS: Acute and chronic effects of ethanol on intestinal lipid metabolism. Biochim Biophys Acta 388:19–28, 1975.

    PubMed  CAS  Google Scholar 

  192. Middleton WRJ, Carter EA, Drummey GD, Isselbacher KJ: Effect of oral ethanol administration on intestinal cholesterogenesis in the rat. Gastroenterology 60:880–887, 1971.

    PubMed  CAS  Google Scholar 

  193. Baraona E, Lieber CS: Intestinal lymph formation and fat absorption: Stimulation by acute ethanol administration and inhibition by chronic ethanol feeding. Gastroenterology 68:495–502, 1975.

    PubMed  CAS  Google Scholar 

  194. Mistilis SP, Ockner RK: Effects of ethanol on endogenous lipids and lipoprotein metabolism in small intestine. J Lab Clin Med 80:34–46, 1972.

    PubMed  CAS  Google Scholar 

  195. Hayashi H: Lipid metabolism in the intestinal tract and its modification by ethanol. In Preddy VR, Watson RR (eds): Alcohol and the gastrointestinal tract. Boca Raton, FL, CRC Press, 1996, 289–309.

    Google Scholar 

  196. Thomson ABR, Keelan M, Clandinin MT: Feeding rats diets enriched with saturated fatty acids prevent the inhibitory effects of acute and chronic ethanol exposure on the in vitro uptake of hexoses and lipids. Biochim Biophys Acta 1084:122–128, 1991.

    PubMed  CAS  Google Scholar 

  197. Hernell O, Johnson 0: Effects of ethanol on plasma triglycerides in male and female rats. Lipids 893–508, 1973.

    Google Scholar 

  198. Barboriak JJ: Effect of ethanol on lipoprotein lipase activity. Life Sci 5:237–241, 1966.

    Article  CAS  Google Scholar 

  199. Kudzma DJ, Schonfeld G: Alcoholic hyperlipidemia: Induction by alcohol but not by carbohydrate. JLab Clin Med 77:384–389, 1971.

    CAS  Google Scholar 

  200. Nikkilä EA, Taskinen M-R, Huttunen JK: Effect of acute ethanol load on postheparin plasma lipoprotein lipase and hepatic lipase activities and intravenous fat tolerance. Horm Metab Res 10:220–223, 1978.

    PubMed  Google Scholar 

  201. Nilsson-Ehle P, Carlstrom S, Belfrage P: Effects of ethanol intake on lipoprotein lipase activity in adipose tissue of fasting subjects. Lipids 13:433–437, 1978.

    Article  PubMed  CAS  Google Scholar 

  202. Pownall HJ: Dietary ethanol is associated with reduced lipolysis of intestinally derived lipoproteins. J Lipid Res 35:2105–2113, 1994.

    PubMed  CAS  Google Scholar 

  203. Redgrave TG, Martin G: Effects of chronic ethanol consumption on the catabolism of chylomicron triacylglycerol and cholesteryl ester in the rat. Atherosclerosis 28:69–80, 1977.

    Article  PubMed  CAS  Google Scholar 

  204. Lakshman MR, Ezekiel M: Relationship of alcoholic hyperlipidemia to the feedback regulation of hepatic cholesterol synthesis by chylomicron remnant. Alcohol Clin Exp Res 6:482–496, 1982.

    Article  Google Scholar 

  205. Lakshman MR, Ezekiel M, Campbell BS, Muesing RA: Binding, uptake, and metabolism of chylomicron remnants by hepatocytes from control and chronic ethanol-fed rats. Alcohol Clin Exp Res 10:412–418, 1986.

    Article  Google Scholar 

  206. Savolainen M, Baraona E, Leo MA, Lieber CS: Pathogenesis of the hypertriglyceridemia at early stages of alcoholic liver injury in the baboon. J Lipid Res 27:1073–1083, 1986.

    PubMed  CAS  Google Scholar 

  207. Sane T, Nikkilä EA, Taskinen M-R, et al: Accelerated turnover of very low density lipoprotein triglycerides in chronic alcohol users. A possible mechanism for the up-regulation of high density lipoprotein by ethanol. Atherosclerosis 53:185–193, 1984.

    Article  PubMed  CAS  Google Scholar 

  208. Malmendier CL, Delcroix C: Effect of alcohol intake on high and low density lipoprotein metabolism in healthy volunteers. Clin Chim Acta 152:281–288, 1985.

    Article  PubMed  CAS  Google Scholar 

  209. Sigurdsson G, Nicoll A, Lewis B: The metabolism of low density lipoprotein in endogenous hypertriglyceridemia. Eur J Clin Invest 6:167–177, 1976.

    Article  PubMed  CAS  Google Scholar 

  210. Breier C, Lisch H-J, Drexel H, Braunsteiner H: Post-heparin lipolytic activities and alterations of the chemical composition of high density lipoproteins in alcohol-induced type V hyperlipidemia. Atherosclerosis 52:317–328, 1984.

    Article  PubMed  CAS  Google Scholar 

  211. Alexander RH, Friedberg SJ, Bogdonoff MD, Estes EH: Hepatic cirrhosis. Correlation of clinical severity and abnormality in triglyceride metabolism. Metabolism 12:197–206, 1963.

    PubMed  CAS  Google Scholar 

  212. Seakins A, Waterlow JC: Effect of a low-protein diet on the incorporation of amino acids into rat serum lipoproteins. Biochem J 129:793–795, 1972.

    PubMed  CAS  Google Scholar 

  213. Lombardi BP, Pani P, Schlunk FF: Choline-deficiency fatty liver: Impaired release of hepatic triglycerides. J Lipid Res 9:437–446, 1968.

    PubMed  CAS  Google Scholar 

  214. Ekman R, Fex G, Johansson BG, et al: Changes in plasma high density lipoproteins and lipolytic enzymes after long-term, heavy consumption. Scand J Clin Lab Invest 41:709–715, 1981.

    Article  Google Scholar 

  215. Taskinen M-R, Valimaki M, Nikkila EA, et al: High density lipoprotein subfractions and postheparin plasma lipases in alcoholic men before and after ethanol withdrawal. Metabolism 31:1168–1174, 1982.

    Article  PubMed  CAS  Google Scholar 

  216. Hartung GH, Foreyt JP, Reeves RS, et al: Effect of alcohol dose on plasma lipoprotein subfractions and lipolytic enzyme activity in active and inactive men. Metabolism 39:81–86, 1990.

    Article  PubMed  CAS  Google Scholar 

  217. Mordasini R, Kaffarnik H, Schneider J, Riesen W: Alkohol und Plasmalipoproteine im akut und Langzeitversuch. Schweiz Med Wochen 112:1928–1931, 1982.

    CAS  Google Scholar 

  218. Johansson BC, Medhus A: Increase in plasma a-lipoproteins in chronic alcoholics after acute abuse. Acta Med Scand 195:273–277, 1974.

    PubMed  CAS  Google Scholar 

  219. Devenyi P, Robinson GM, Roncari DAK: Alcohol and high-density lipoproteins. Can Med AssocJ 123:981–984, 1980.

    CAS  Google Scholar 

  220. LaPorte R, Valvo-Gerard L, Kuller L, et al: The relationship between alcohol consumption, liver enzymes and high-density lipoprotein cholesterol. Circulation 64(Suppl III):67–72, 1981.

    CAS  Google Scholar 

  221. Taskinen M-R, Valimaki M, Nikkila EA, et al: Sequence of alcohol-induced initial changes in plasma lipoproteins. Metabolism 34:112–119, 1985.

    Article  PubMed  CAS  Google Scholar 

  222. Fraser GE, Anderson JT, Foster W, et al: The effect of alcohol on serum high density lipoprotein (HDL). Atherosclerosis 46:275–286, 1983.

    Article  PubMed  CAS  Google Scholar 

  223. Hartung GH, Foreyt JP, Mitchell RE, et al: Effect of alcohol intake on high-density lipoprotein cholesterol levels in runners and inactive men. JAMA 249:747–750, 1983.

    Article  PubMed  CAS  Google Scholar 

  224. Danielsson B, Ekman R, Fex G, et al: Changes in plasma high density lipoproteins in chronic male alcoholics during and after abuse. Scand J Clin Lab Invest 38:113–119, 1978.

    Article  PubMed  CAS  Google Scholar 

  225. Barboriak JJ, Jacobson GR, Cushman P, et al: Chronic alcohol abuse and high density lipoprotein cholesterol. Alcoholism: Clin Exp Res 4:346–349, 1980.

    Article  CAS  Google Scholar 

  226. Ernst N, Fisher M, Smith W, et al: The association of plasma high-density lipoprotein cholesterol with dietary intake and alcohol consumption. The Lipid Research Clinics Prevalence Study. Circulation 62(Suppl IV):41–52, 1980.

    CAS  Google Scholar 

  227. Hulley SB, Gordon S: Alcohol and high-density lipoprotein cholesterol: Causal inference from diverse study designs. Circulation 64(Suppl 3):57–63, 1981.

    Google Scholar 

  228. Phillips NR, Havel RJ, Kane JP: Levels and interrelationships of serum and lipoprotein cholesterol and triglycerides. Association with adiposity and the consumption of ethanol, tobacco and beverages containing caffeine. Arteriosclerosis 1:13–24, 1981.

    PubMed  CAS  Google Scholar 

  229. Bell H, Strømme JH, Steensland H, Bache-Wiig JE: Plasma HDL-cholesterol and estimated ethanol consumption in 104 patients with alcohol dependence syndrome. Alcohol Alcohol 20:35–40, 1985.

    PubMed  CAS  Google Scholar 

  230. Glueck CJ, Heiss G, Morrison JA, et al: Alcohol intake, cigarette smoking and plasma lipids and lipoproteins in 12–19-year-old children. Circulation 64(Suppl III):48–56, 1981.

    CAS  Google Scholar 

  231. Barrett-Connor E, Sharez L: A community study of alcohol and other factors associated with the distribution of high density lipoprotein cholesterol in older vs younger men. Am J Epidemiol 115:888–893, 1982.

    PubMed  CAS  Google Scholar 

  232. Willet W, Hennekens CH, Siegel AJ, et al: Alcohol consumption and high density lipoprotein cholesterol in marathon runners. N EnglJ Med 303:1159–1161, 1980.

    Google Scholar 

  233. Hagiage M, Marti C, Rigau D, et al: Effect of moderate alcohol intake on the lipoproteins of normotriglyceridemic obese subjects compared to normoponderal controls. Metabolism 41:856–861, 1992.

    Article  PubMed  CAS  Google Scholar 

  234. Weidner G, Connor SL, Chesney MA, et al: Sex differences in high density lipoprotein cholesterol among low-level alcohol consumers. Circulation 83:176–180, 1991.

    PubMed  CAS  Google Scholar 

  235. Frezza M, DiPadova C, Pozzato G, et al: High blood alcohol levels in women: Role of decreased gastric alcohol dehydrogenase activity and first pass metabolism. N Engl J Med 322:95–99, 1990.

    Article  PubMed  CAS  Google Scholar 

  236. Haskell WL, Camargo C Jr, Williams PT, et al: The effect of cessation and resumption of moderate alcohol intake on serum high-density-lipoprotein subfractions. A controlled study. N Engl J Med 310:805–810, 1984.

    Article  PubMed  CAS  Google Scholar 

  237. Haffner SM, Applebaum-Bowden D, Wahl PW, et al: Epidemiological correlates of high density lipoprotein subfractions, apolipoproteins A-I, A-II, and D, and lecithin cholesterol acyltransferase. Effects of smoking, alcohol, and adiposity. Arteriosclerosis 5:169–177, 1985.

    PubMed  CAS  Google Scholar 

  238. Williams PT, Kraus RM, Wood PD, et al: Associations of diet and alcohol intake with high-density lipoprotein subclasses. Metabolism 34:524–530, 1985.

    Article  PubMed  CAS  Google Scholar 

  239. Valimäki M, Taskinen M-R, Ylikahri R, et al: Comparison of the effects of two different doses of alcohol on serum lipoproteins, HDL-subfractions and apolipoproteins A-I and A-II: A controlled study. EurJClin Invest 18:472–480, 1988.

    Article  Google Scholar 

  240. Goldberg CS, Tall AR, Krumholz S: Acute inhibition of hepatic lipase and increase in plasma lipoproteins after alcohol intake. J Lipid Res 25:714–720, 1984.

    PubMed  CAS  Google Scholar 

  241. Malmendier CL, Mailier EL, Amerijckx JP, Fischer ML: Plasma levels of apolipoproteins A-I, A-II in alcoholism in relation to the degree of histological liver damage, and to liver function tests. Hepatogastroenterology 30:236–239, 1983.

    PubMed  CAS  Google Scholar 

  242. Camargo CA, Williams PT, Vranizan KM, et al: The effect of moderate alcohol intake on serum apolipoproteins A-I and A-II. JAMA 253:2854–2857, 1985.

    Article  PubMed  Google Scholar 

  243. Poynard T, Abella A, Pignon JP, et al; Apolipoprotein A-I and alcoholic liver disease. Hepatology 6: 1391–1395, 1986.

    Article  PubMed  CAS  Google Scholar 

  244. Duhamel G, Nalpas B, Goldstein S, et al: Plasma lipoprotein and apolipoprotein profile in alcoholic patients with and without liver disease: On the relative roles of alcohol and liver injury. Hepatology 4:577–585, 1984.

    Article  PubMed  CAS  Google Scholar 

  245. Puchois P, Fontan M, Gentilini J-L, et al: Serum apolipoprotein A-11, a biochemical indicator of alcohol abuse. Clin Chim Acta 185:185–189, 1984.

    Article  Google Scholar 

  246. Puchois P, Ghalin N. Zylberberg G, et al: Effect of alcohol intake on human apolipoprotein A-I-containing lipoprotein subfractions. Arch Intern Med 150:1638–1641, 1990.

    Article  PubMed  CAS  Google Scholar 

  247. Sabesin SM, Weidman SW: Lipoprotein profiles in chronic alcoholics: Use of high-density lipoprotein subspecies levels to differentiate subpopulations. Hepatology 4:737–738, 1984.

    Article  PubMed  CAS  Google Scholar 

  248. Cushman P, Barboriak JJ, Liao A, Hoffman NE: Association between plasma high density lipoprotein cholesterol and antipyrine metabolism in alcoholics. Life Sci 30:1721–1724, 1982.

    Article  PubMed  CAS  Google Scholar 

  249. Luoma PV, Sotaniemi EA, Pelkonen RO, Enholm C: High-density lipoproteins and hepatic microsomal enzyme induction in alcohol consumers. Res Commun Chem Pathol Pharmacol 37:91–96, 1982.

    PubMed  CAS  Google Scholar 

  250. Cluette JE, Mulligan JJ, Noring R, et al: Ethanol enhances de novo synthesis of high density lipoprotein cholesterol. Proc Soc Exp BiolMed 176:508–511, 1984.

    CAS  Google Scholar 

  251. Mathurin P, Vidaud D, Bedossa P, et al: Quantification of apolipoprotein A-I and B messenger RNA in heavy drinkers according to liver disease. Hepatology 23:44–51, 1996.

    Article  PubMed  CAS  Google Scholar 

  252. Lin RC, Lumeng L, Phelps VL: Serum high-density lipoprotein particles of alcohol-fed rats are deficient in apolipoprotein E. Hepatology 997–313, 1989.

    Google Scholar 

  253. Tam S-P: Effect of ethanol on lipoprotein secretion in two human hepatoma cell lines, HepG2 and Hep3B. Alcohol Clin Exp Res 16:1021–1028, 1992.

    Article  PubMed  CAS  Google Scholar 

  254. Amasuriya RN, Gupta AK, Civen M, et al: Ethanol stimulates apolipoprotein A-I secretion by human hepatocytes: Implications for a mechanism for atherosclerosis protection. Metabolism 41:827–832, 1992.

    Article  Google Scholar 

  255. Nishiwaki M, Ishikawa T, Ito T, et al: Effects of alcohol in lipoprotein lipase, hepatic lipase, cholesteryl ester transfer protein, and lecithin: cholesterol acyltransferase in high-density lipoprotein cholesterol elevation. Atherosclerosis 111:99–109, 1994.

    Article  PubMed  CAS  Google Scholar 

  256. Mishra L, Le N-A, Brown V, Mezey E: Effect of acute intravenous alcohol on plasma lipoproteins in man. Metabolism 40:1128–1130, 1991.

    Article  PubMed  CAS  Google Scholar 

  257. Parkes JG, Auerbach W, Goldberg DM: Effect of alcohol in lipoprotein metabolism. II. Lipolytic activities and mixed function oxidases. Enzyme 43:47–55, 1990.

    PubMed  CAS  Google Scholar 

  258. Muller P, Fellin R, Lambrecht J. et al: Hypertriglyceridaemia secondary to liver disease. EurJ Clin lnvest 4:419–428, 1974.

    Article  CAS  Google Scholar 

  259. Freeman M, Kuiken L, Ragland JB, Sabesin SM: Hepatic triglyceride lipase deficiency in liver disease. Lipids 12:443–445, 1977.

    Article  PubMed  CAS  Google Scholar 

  260. Karsenty C, Baraona E, Savolainen MJ, Lieber CS: Effects of chronic ethanol intake on mobilization and excretion of cholesterol in baboons. J Clin lnvest 75:976–986, 1985.

    Article  CAS  Google Scholar 

  261. Cluette-Brown J, Mulligan J, Igoe F, Hojnacki JL: Ethanol induced alterations in low and high density lipoproteins. Proc Soc Exp Biol Med 178:495–499, 1985.

    PubMed  CAS  Google Scholar 

  262. Savolainen MJ, Hannuksela M, Sepuanen S, et al: Increased high-density lipoprotein cholesterol concentration in alcoholics is related to low cholesteryl ester transfer protein activity. EurJ Clin Invest 20:593–599, 1990.

    Article  CAS  Google Scholar 

  263. Hannuksela M, Marcel YL, Kesaniemi YA, Savolainen MJ: Reduction in the concentration and activity of plasma cholesteryl ester transfer protein by alcohol. J Lipid Res 33:737–744, 1992.

    PubMed  CAS  Google Scholar 

  264. Hirano K-I, Yamashita S, Sakai N, et al: Low-density lipoproteins in hyperalphalipopro-teinemic heavy alcohol drinkers have reduced affinity for the low density lipoprotein receptor. Clin Biochem 25:357–362, 1992.

    Article  PubMed  CAS  Google Scholar 

  265. Ridker PM, Vaughan DE, Stampfer MJ, et al: A cross-sectional study of endogenous tissue plasminogen activator, total cholesterol, HDL cholesterol, and apolipoproteins A-I, A-II, and B100. Arterioscler Thromb 13:1587–1592, 1993.

    PubMed  CAS  Google Scholar 

  266. van Tol A, Groener JEM, Scheek LM, et al: Induction of net mass lipid transfer reactions in plasma by wine consumption with dinner. Eur J Clin lnvest 25:390–395, 1995.

    Article  Google Scholar 

  267. Schwartz CC, HaIloran LG, Vlahcevic ZR, et al: Preferential utilization of free cholesterol from high-density lipoproteins for biliary cholesterol secretion in man. Science 200:62–64, 1978.

    Article  PubMed  CAS  Google Scholar 

  268. Schwartz CC, Vlahcevic ZR, Berman M, et al: Central role of high density lipoprotein in plasma free cholesterol metabolism. J Clin lnvest 70:105–116, 1982.

    Article  CAS  Google Scholar 

  269. Cluette JE, Mulligan JJ, Noring R, et al: Effect of ethanol on lipoprotein synthesis and fecal sterol excretion. Nutr Res 5:45–56, 1985.

    Article  CAS  Google Scholar 

  270. Topping DL, Weller RA, Nader CJ, et al: Adaptive effects of dietary ethanol in the pig: Changes in plasma high-density lipoproteins and fecal steroid excretion and mutagenicity. Am J Clin Nutr 36:245–250, 1982.

    PubMed  CAS  Google Scholar 

  271. Cohen BI, Raicht RF: Sterol metabolism in the rat: Effect of alcohol on sterol metabolism in two strains of rats. Alcohol Clin Exp Res 5:225–229, 1981.

    Article  PubMed  CAS  Google Scholar 

  272. Nestel PJ, Simons LA, Homma Y: Effects of ethanol on bile acid and cholesterol metabolism. Am J Clin Nutr 29:1007–1015, 1976.

    PubMed  CAS  Google Scholar 

  273. Hojnacki JL, Cluette-Brown JE, Dawson M, et al: Alcohol delays clearance of lipoproteins from the circulation. Metabolism 41:1151–1153, 1992.

    Article  PubMed  CAS  Google Scholar 

  274. Maruszewicz M, Mirkiewicz E, Wehr H: Abnormal low density lipoprotein composition in some chronic alcoholics: A possible mechanism. Alcohol Alcohol 25:533–538, 1990.

    Google Scholar 

  275. Rudel LL, Leathers CW, Bond MG, Bullock BC: Dietary ethanol-induced modifications in hyperlipoproteinemia and atherosclerosis in non-human primates (Macaca nemestrina). Atherosclerosis 1:144–155, 1981.

    CAS  Google Scholar 

  276. Hojnacki JL, Cluette-Brown JE, Dawson M, et al: Alcohol dose and low density lipoprotein heterogeneity in squirrel monkeys (Saimirisciureus). Atherosclerosis 94:249–261, 1992.

    Article  PubMed  CAS  Google Scholar 

  277. Kesaniemi YA, Kervinen K, Miettinen TA: Acetaldehyde modification of low density lipoprotein accelerates its catabolism in man. Eur J Clin Invest 17:29–36, 1987.

    Article  PubMed  CAS  Google Scholar 

  278. Savolainen MJ, Baraona E, Lieber CS: Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins. Life Sci 40:841–846, 1987.

    Article  PubMed  CAS  Google Scholar 

  279. Wehr H, Rodo M, Lieber CS, Baraona E: Acetaldehyde adducts and autoantibodies against VLDL and LDL in alcoholics. JLipidRes 34:1237–1244, 1993.

    CAS  Google Scholar 

  280. Kervinen K, Savolainen MJ, Kesäniemi YA: Multiple changes in apoprotein B containing lipoproteins after ethanol withdrawal in alcoholic men. Ann Med 23:407–413. 1991.

    Article  PubMed  CAS  Google Scholar 

  281. Cullen KJ, Knuiman MW, Ward NJ: Alcohol and mortality in Busselton, Western Australia. Am J Epidemiol 137:242–248, 1993.

    PubMed  CAS  Google Scholar 

  282. Popham RE, Schmidt W, Israel Y: Variation in mortality from ischemic heart disease in relation to alcohol and milk consumption. Med Hypotheses 12:321–329, 1983.

    Article  PubMed  CAS  Google Scholar 

  283. Shaper AG, Wannamethee G, Walker M: Alcohol and mortality in British men: Explaining the U-shaped curve. Lancet 2:1267–1273, 1988.

    Article  PubMed  CAS  Google Scholar 

  284. Fraser GE, Upsdell M: Alcohol and other discriminants between cases of sudden death and myocardial infarction. Am J Epidemiol 114:462–476, 1981.

    PubMed  CAS  Google Scholar 

  285. Rimm EB, Giovannucci EL, Willett WC, et al: Prospective study of alcohol consumption and risk of coronary heart disease in men. Lancet 338:464–468, 1991.

    Article  PubMed  CAS  Google Scholar 

  286. Suh I, Shaten J, Cutler JA, Kuller LH: Alcohol use and mortality from coronary heart disease: The role of high-density lipoprotein cholesterol. Ann Intern Med 116:881–887, 1992.

    PubMed  CAS  Google Scholar 

  287. Klatsky AL, Armstrong MA, Friedman GD: Alcohol and mortality. Ann Intern Med 117:646–654, 1992.

    PubMed  CAS  Google Scholar 

  288. Gaziano JM, Buring JE, Breslow JL, et al: Moderate alcohol intake, increased levels of high density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med 329:1829–1834, 1993.

    Article  PubMed  CAS  Google Scholar 

  289. Eberhard TP: Effect of alcohol on cholesterol-induced atherosclerosis in rabbits. Arch Pathol 21:616–622, 1936.

    CAS  Google Scholar 

  290. Barboriak JJ, Anderson AJ, Rimm AA, Tristani FE: Alcohol and coronary arteries. Alcohol Clin Exp Res 3:29–32, 1979.

    Article  PubMed  CAS  Google Scholar 

  291. Hennekens CH, Rosner B, Cole DS: Daily alcohol consumption and fatal coronary heart disease. Am J Epidemiol 107:196–200, 1978.

    PubMed  CAS  Google Scholar 

  292. Marmot MG, Rose G, Shipley MJ, Thomas BJ: Alcohol and mortality: A U-shaped curve. Lancet 1:580–583, 1981.

    Article  PubMed  CAS  Google Scholar 

  293. Yano K, Rhoads GG, Kagan A: Coffee, alcohol and risk of coronary heart disease among Japanese men living in Hawaii. N Engl J Med 297:405–409, 1977.

    Article  PubMed  CAS  Google Scholar 

  294. Blackwelder WC, Yano K, Rhoads GG, et al: Alcohol and mortality: The Honolulu heart study. Am J Med 68:164–169, 1980.

    Article  PubMed  CAS  Google Scholar 

  295. Boffeta P, Garfinkel L: Alcohol drinking and mortality among men enrolled in an American Cancer Society prospective study. Epiodemiology 1:392–348, 1990.

    Google Scholar 

  296. Castelli WP: Diet, smoking, and alcohol: Influence on coronary heart disease risk. Am J Kidney Dis 16:41–46, 1990.

    PubMed  CAS  Google Scholar 

  297. Jackson R, Scragg R, Beaglehole R: Alcohol consumption and risk of coronary heart disease. Br Met J 303:211–216, 1991.

    CAS  Google Scholar 

  298. Gruchow HW, Hoffmann RG, Anderson AJ, Barboriak JJ: Effects of drinking patterns on the relationship between alcohol and coronary occlusion. Atherosclerosis 43:393–404, 1982.

    Article  PubMed  CAS  Google Scholar 

  299. Gronbaek M, Deis A, Sorensen TIA, et al: Mortality associated with moderate intake of wine, beers or spirits. Br Med J 310:1165-1169, 1995.

    CAS  Google Scholar 

  300. Renaud S, de Logeril M: Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526, 1992.

    Article  PubMed  CAS  Google Scholar 

  301. Stampfer MJ, Colditz GA, Willett WC, et al: A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. N Engl J Med 319:267–273, 1988.

    PubMed  CAS  Google Scholar 

  302. Parker DR, McPhillips JB, Derby CA, et al: High-density-lipoprotein cholesterol and types of alcoholic beverages consumed among men and women. J Public Health 86:1022–1027, 1996.

    CAS  Google Scholar 

  303. Langer RD, Criqui MH, Reed DM: Lipoproteins and blood pressure as biological pathways for effect of moderate alcohol consumption on coronary heart disease. Circulation 85:919–915, 1992.

    Google Scholar 

  304. Rubin EM, Krauss RM, Spangler EA, et al: Inhibition of early atherogenesis in transgenic mice by human apolipoprotein A-I. Nature 353:265–267, 1991.

    Article  PubMed  CAS  Google Scholar 

  305. Emerson EE, Manaves V, Singer T, Tabesh M: Chronic alcohol feeding inhibits atherogenesis in C57BL/6 hyperlipidemic mice. Am J Pathol 147:1749–1758, 1995.

    Google Scholar 

  306. Dai J, Miller BA, Lin RC: Alcohol feeding impedes early atherosclerosis in low-density lipoprotein receptor knockout mice: Factors in addition to high-density lipoprotein-apolipoprotein A1 are involved. Alcohol Clin Exp Res 21:11–18, 1997.

    PubMed  CAS  Google Scholar 

  307. Miller NE, Hammett F, Saltissi S, et al: Relation of angiographically defined coronary artery disease to plasma lipoprotein subfractions and apolipoproteins. Br Med J 282:1741–1744, 1981.

    CAS  Google Scholar 

  308. Ballantyne FC, Clark RS, Simpson HS, and Ballantyne D: High density and low density lipoprotein subfractions in survivors of myocardial infarction and in control subjects. Metabolism 31:1433–437, 1982.

    Article  Google Scholar 

  309. Gofman JW, Young W, Tandy R: Ischemic heart disease, atherosclerosis, and longevity. Circulation 34:679–697, 1966.

    PubMed  CAS  Google Scholar 

  310. Stampfer MJ, Sacks FM, Salvini S, et al: A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 325:373–381, 1991.

    PubMed  CAS  Google Scholar 

  311. Buring JE, O’Connor GT, Goldhaver SZ, et al: Decreased HDL, and HDL, cholesterol, apo A-I and apo A-II, and increased risk of myocardial infarction. Circulation 85:22–29, 1992.

    PubMed  CAS  Google Scholar 

  312. Sillanaukee P, Koivula T, Jokela H, et al: Relationship of alcohol consumption to changes in HDL-subfractions. Eur J Clin Invest 23:486–491, 1993.

    Article  PubMed  CAS  Google Scholar 

  313. Steinberg D, Pearson TA, Kuller LH: Alcohol and atherosclerosis. Ann Intern Med 114:967–976, 1991.

    PubMed  CAS  Google Scholar 

  314. Lin RC, Dai J, Lumeng L, et al: Serum low density lipoprotein of alcoholic patients is chemically modified in vivo and induces apolipoprotein E synthesis by macrophages. J Clin Invest 95:1979–1986, 1995.

    Article  PubMed  CAS  Google Scholar 

  315. Frankel E, Kanner J, German J, et al: Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wines. Lancet 341:454–457, 1993.

    Article  PubMed  CAS  Google Scholar 

  316. Whitehead TP, Robinson D, Allaway S, et al: Effect of red wine ingestion on the antioxidant capacity of serum. Clin Chem 41:32–35, 1995.

    PubMed  CAS  Google Scholar 

  317. Fuhrman B, Lavy A, Aviram M: Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoproteins to lipid peroxidation. Am J Clin Nutr 61:549–554, 1995.

    PubMed  CAS  Google Scholar 

  318. de Rijke JB, Demacker PNM, Assen NA, et al: Red wine consumption does not affect oxidizability of low-density lipoproteins in volunteers. Am J Clin Nutr 63:329–334, 1996.

    PubMed  Google Scholar 

  319. Marth E, Cazzolato G, Bon B, et al: Serum concentrations of Lp(a) and other lipoprotein parameters in heavy alcohol consumers. Ann Nutr Metab 26:56–62, 1982.

    Article  PubMed  CAS  Google Scholar 

  320. Sharper PC, McGrath LT, McClean E, et al: Effect of red wine consumption on lipoprotein(a) and other risk factors for atherosclerosis. Q J Med 88:101–108, 1995.

    Google Scholar 

  321. Kervinen K, Savolainen MJ, Kesaniemi YA: A rapid increase in lipoprotein(a) levels after ethanol withdrawal in alcoholic men. Life Sci 48:2183–2188, 1991.

    Article  PubMed  CAS  Google Scholar 

  322. Valimaki M, Kahri J, Laitinen K, et al: High density lipoprotein subfractions, apolipoprotein A-I containing lipoproteins, lipoprotein(a), and cholesterol ester transfer protein activity in alcoholic women before and after alcohol withdrawal. Eur J Clin Invest 23:406–417, 1993.

    Article  PubMed  CAS  Google Scholar 

  323. Delarue J, Husson M, Schellenberg F, et al: Serum lipoprotein(a) in alcoholic men: Effect of withdrawal. Alcohol 13:309–314, 1996.

    Article  PubMed  CAS  Google Scholar 

  324. Jackson R, Scragg R, Beaglehole R: Does recent alcohol consumption reduce the risk of acute myocardial infarction and coronary death in regular drinkers? Am J Epidemiol 136:819–824, 1992.

    Article  PubMed  CAS  Google Scholar 

  325. Renaud SC, Beswick AD, Fehily AM, et al: Alcohol and platelet aggregation: The Caerphilly Prospective Heart Disease Study. Am J Clin Nutr 55:1012–1017, 1992.

    PubMed  CAS  Google Scholar 

  326. Guivemau M, Baraona E, Lieber CS: Acute and chronic effects of ethanol and its metabolites on vascular production of prostacyclin in rats. JPharmacol Exp Ther 240:59–64, 1987.

    Google Scholar 

  327. Fleisher LN, Tall AR, Witte LD, et al: Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins. J Biol Chem 257:6653–6655, 1982.

    PubMed  CAS  Google Scholar 

  328. Guivernau M, Baraona E, Soong J, Lieber CS: Enhanced stimulatory effect of HDL and other agonists on vascular prostacyclin production in rats fed alcohol-containing diets. Biochem Pharmacol 38:503–508, 1989.

    Article  PubMed  CAS  Google Scholar 

  329. Beitz J, Block H-U, Beitz A, et al: Endogenous lipoproteins modify the thromboxane formation capacity of platelets. Atherosclerosis 60:95–99, 19896.

    Google Scholar 

  330. Mikkhailidis DP, Jeremy JY, Barradas MA, et al: Effect of ethanol on vascular prostacyclin (prostaglandin 12) synthesis, platelet aggregation, and platelet thromboxane release. Br Med J 287:1495–1498, 1983.

    Article  Google Scholar 

  331. Kangasaho M, Hillborn M, Kaste M, Vapaatalo H: Effects of ethanol intoxication and hangover on plasma levels of thromboxane B2 and 6-keto prostaglandin Fla and on thromboxane B2 formation by platelets in man. Throm Haemost 48:232–234, 1982.

    CAS  Google Scholar 

  332. Kontula K, Vilnikka L, Ylikorkala O, Ylikahri R: Effect of acute ethanol intake on thromboxane and prostacyclin in human. Life Sci 31:261–264, 1982.

    Article  PubMed  CAS  Google Scholar 

  333. Arai M, Okuno F, Nagata S, et al: Platelet dysfunction and alteration of prostaglandin metabolism after chronic alcohol consumption (Abstract). ScandJ Gastroenterol 21:1091, 1986.

    Article  CAS  Google Scholar 

  334. Hillborn M, Kangasaho M, Lowbeer C, et al: Effects of ethanol on platelet function. Alcohol 2:429–432, 1985.

    Article  Google Scholar 

  335. Förstermann U, Feuerstein TJ: Decreased systemic formation of prostaglandin E and prostacyclin, and unchanged thromboxane formation, in alcoholics during withdrawal as estimated from metabolites in urine. Clin Sci 73:277–283, 1987.

    PubMed  Google Scholar 

  336. Meade TW, Chakrabarti R, Haines AP, et al: Characteristics affecting fibrinolytic activity and plasma fibrinogen concentrations. Br Med J 1:153–156, 1979.

    PubMed  CAS  Google Scholar 

  337. Hendriks HFJ, Veenstra J, Velthuis-te-Wierik EJM, et al: Effect of moderate alcohol does with the evening meal on fibrinolytic activity. Br Med J 308:1003–1006, 1994.

    CAS  Google Scholar 

  338. Ridker PM, Vaughan DE, Stampfer MJ, et al: Association of moderate alcohol consumption and plasma concentration of endogenous tissue-type plasminogen activator. JAMA 272:929–933, 1994.

    Article  PubMed  CAS  Google Scholar 

  339. Iso H, Folsom AR, Koike KA, et al: Antigens of tissue plasminogen activator and plasminogen activator inhibitor I: Correlates in nonsmoking Japanese and Caucasian men and women. Thromb Haemost 70:475–480, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Baraona, E., Lieber, C.S. (1998). Alcohol and Lipids. In: Recent Developments in Alcoholism. Recent Developments in Alcoholism, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-47148-5_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47148-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45747-0

  • Online ISBN: 978-0-306-47148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics