Skip to main content

Anonymous-Key Quantum Cryptography and Unconditionally Secure Quantum Bit Commitment

  • Chapter
Quantum Communication, Computing, and Measurement 3
  • 770 Accesses

Abstract

A new cryptographic tool, anonymous quantum key technique, is introduced that leads to unconditionally secure key distribution and encryption schemes that can be readily implemented experimentally in a realistic environment. If quantum memory is available, the technique would have many features of public-key cryptography; an identification protocolthat does not require a shared secret key is provided as an illustration. The possibility is also indicated for obtaining unconditionally secure quantum bit commitment protocols with this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. P. Yuen, “Unconditionally Secure Quantum Bit Commitment is Possible,” LANL quant-ph/0006109.

    Google Scholar 

  2. For a broad and thorough discussion of standard cryptography, see A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, New York, 1997.

    MATH  Google Scholar 

  3. But it was first published in S. Wiesner, SIGACT News 15 (1), 78 (1983).

    Article  MATH  Google Scholar 

  4. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, IEEE Press, New York, 1984; p. 175.

    Google Scholar 

  5. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Cryptol. 5, 3(1992).

    Article  MATH  Google Scholar 

  6. H.-K. Lo and H. F. Chau, Phys. Rev. Lett. 78, 3410 (1997); D. Mayers, ibid, p. 3414; H.-K. Lo, Phys. Rev A56, 1154(1997).

    Article  ADS  Google Scholar 

  7. Of course Eve cannot have such an identical copy from the no-clone theorem, W. K. Wooters and W. Zurek, Nature 299, 802 (1982), and H. P. Yuen, Phys. Lett. A 113, 405 (1986).

    Article  ADS  Google Scholar 

  8. C.W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, 1976, Ch. IV.

    Google Scholar 

  9. H. P. Yuen, R.S. Kennedy, and M. Lax, IEEE Trans. Inform. Theory 21, 125(1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, IEEE Trans. Inform Theory 41, 1915 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. See P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, New York, 1997 of Ref. [2]. p. 404

    MATH  Google Scholar 

  12. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North Holland, 1982, Ch. III and IV.

    Google Scholar 

  13. H. P. Yuen, in Proceedings of the Workshop on Squeezed States and Uncertainty Relations, NASA Conference Publication 3135, pp. 13–21, 1991. See also H. P. Yuen, “Communication and Measurements with Squeezed States,” in Quantum Squeezing, P. D. Drummond and Z. Ficek, Springer, to be published.

    ADS  Google Scholar 

  14. H. P. Yuen, in Quantum Communications and Measurements II, ed. by P. Kumar, etc., Plenum, 2000, pp. 399–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yuen, H.P. (2002). Anonymous-Key Quantum Cryptography and Unconditionally Secure Quantum Bit Commitment. In: Tombesi, P., Hirota, O. (eds) Quantum Communication, Computing, and Measurement 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47114-0_45

Download citation

  • DOI: https://doi.org/10.1007/0-306-47114-0_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46609-0

  • Online ISBN: 978-0-306-47114-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics