Skip to main content

Mathematical Modelling of Microbial Processes-Motivation and Means

  • Chapter
Engineering and Manufacturing for Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 4))

Abstract

In this paper the motivation for using mathematical models to describe microbial processes is discussed. Mathematical models have a unique ability to extract information from the wealth of experimental data constantly accumulating in the fields of basic and applied microbiology. They allow for detailed investigations of the interactions in complex biological systems that are otherwise practically impossible. Modelling can be applied to optimise the performance of industrial processes, e.g. by use in advanced control algorithms or by simulating different operating conditions. Furthermore, mathematical models used for computer simulations of microbial processes are invaluable educational tools. Mathematical models can be grouped in three classes — whole cell models, segregation models and element models. A whole cell model describes growth and product formation, often in an empirical fashion. A segregation model is used to describe different cell types, and element models are used to give detailed mechanistic descriptions of specific processes. Any level of detail can be included in each of the three classes of models, and the different models may be combined when a fermentation process is to be described. Here a general mathematical framework is given for whole cell models and a few examples of relatively simple, yet very applicable, models are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agger, T., Spohr, A. B., Carlsen, M. and Nielsen, J. (1998) Growth and Product Formation of Aspergillus oryzae during Submerged Cultivations: Verification of a Morphologically Structured Model Using Fluorescent Probes, Biotechnol. Bioeng. 57: 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Agger, T. and Nielsen, J. (1999) Genetically Structured Modelling of Protein Production in Filamentous Fungi, Biotechnol Bioeng., 66: 164–170.

    Article  CAS  PubMed  Google Scholar 

  • Carlsen M., Jochumsen K.V., Emborg C. and Nielsen, J. (1997) Modelling the growth and proteinase a production in continuous cultures of recombinant Saccharomyces cerevisiae, Biotechnol. Bioeng. 55: 447–454.

    Article  CAS  Google Scholar 

  • Dhurjati, P., Ramkrishna, D., Flickinger, M. C. and Tsao, G. T. (1985) A Cybernetic View of Microbial Growth: Modelling Cells as Optimal Strategists, Biotechnol. Bioeng. 27: 1–9.

    Article  CAS  Google Scholar 

  • Fredrickson, A. G., McGee, R. D. III and Tsuchiya, H. M (1970) Mathematical Models in Fermentation Processes, Adv. Appl. Microbiol., 23, 419.

    Google Scholar 

  • Lee, S. B. and Bailey, J. E. (1984a) Analysis of Growth Rate Effects on Productivity of Recombinant Escherichia coli Populations Using Molecular Mechanism Models. Biotechnol. Bioeng. 26: 66–73.

    CAS  Google Scholar 

  • Lee, S. B. and Bailey, J. E. (1984b) Genetically Structured Models for lac Promoter-Operator Function in the Escherichia coli Chromosome and in Multicopy Plasmids: lac Operator Function. Biotechnol. Bioeng. 26: 1372–1382.

    CAS  Google Scholar 

  • Lee, S. B. and Bailey, J. E. (1984c) Genetically Structured Models for lac Promoter-Operator Function in the Chromosome and in Multicopy Plasmids: lac Promoter Function. Biotechnol. Bioeng. 26: 1383–1389.

    CAS  Google Scholar 

  • Mathieu, M. and Felenbok, B. (1994) The Aspergillus nidulans CreA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J. 13: 4022–4027.

    CAS  PubMed  Google Scholar 

  • Nielsen, J. and Villadsen J (1992) Modelling of Microbial Kinetics, Chem. Eng. Sci., 47 (17/18), 4225–4270.

    CAS  Google Scholar 

  • Panozzo, C., Cornillot, E. and Felenbok, B. (1998) The CreA Represser Is the Sole DNA-binding Protein Responsible for Carbon Catabolite Repression of the alcA Gene in Aspergillus nidulans via Its Binding to a Couple of Specific Sites. J. Biol. Chem., 273 (11), 6367–6372.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, H.. Carlsen, M. and Nielsen, J. (1999) Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain. Appl. Environ. Microbiol., 65, 11–19

    CAS  PubMed  Google Scholar 

  • Pissara, P.D., Nielsen, J. and Bazin, M.J. (1996) Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fedbatch cultivations, Biotechnol. Bioeng. 51, 168–176.

    Google Scholar 

  • Ramakrishna, R., Ramkrishna, D. and Konopka, A.E. (1996) Cybernetic modelling of growth in mixed, substitutable substrate environments: Preferential and simultaneous utilisation. Biotechnol. Bioeng. 52, 141–151.

    Article  CAS  Google Scholar 

  • Ramkrishna, D. (1979) Statistical models for cell populations, Adv. Biochem. Eng. 11, 1–48.

    Google Scholar 

  • Sauer, U., Hatzimanikatis, V., Bailey, J.E., Hochuli, M., Szyperski, T. and Wuthrich, K. (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis, Nature Biotechnol., 15, 448–452.

    Article  CAS  Google Scholar 

  • Shelikoff, M., Sinskey, A. J. and Stephanopoulos, G. (1996) A Modelling Framework for the Study of Protein Glycosylation, Biotechnol. Bioeng. 50, 73–90.

    Article  CAS  Google Scholar 

  • Sonnleitner, B. and Käppeli, O. (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis, Biotechnol. Bioeng. 28, 927–937.

    Article  CAS  Google Scholar 

  • Spohr, A., Carlsen, M., Nielsen, J. and Villadsen, J. (1997) Morphological characterisation of recombinant strains of Aspergillus oryzae producing α-amylase during batch cultivations, Biotechnol. Let. 19, 257–261.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Agger, T., Nielsen, J. (2001). Mathematical Modelling of Microbial Processes-Motivation and Means. In: Hofman, M., Thonart, P. (eds) Engineering and Manufacturing for Biotechnology. Focus on Biotechnology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-46889-1_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46889-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6927-1

  • Online ISBN: 978-0-306-46889-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics