Skip to main content

The Roles of Melatonin in Development

  • Chapter
Melatonin After Four Decades

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 460))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aravelo R., Afonso D., Castro R., and Rodriguez M. (1991). Fetal brain serotonin synthesis and catabolism is under control by mother intake of tryptophan. Life Sci 49:53–66.

    Google Scholar 

  2. Attanasio A., Rager K., and Gupta D. (1986). Ontogeny of circadian rhythmicity for melatonin, serotonin, and N-acetylserotonin in humans. J Pineal Res 3:251–256.

    PubMed  CAS  Google Scholar 

  3. Bartness T.J., Powers J.B., Hastings M.H., Bittman E.L., and Goldman B.D. (1993). The timed infusion paradigm: What has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? J Pineal Res 15:161–190.

    PubMed  CAS  Google Scholar 

  4. Bassett J.M., Curtis N., Hanson C., and Weeding C.M. (1989). Effects of altered photoperiod or maternal melatonin administration on plasma prolactin concentrations in fetal lambs. J Endocrinol 122:633–643.

    PubMed  CAS  Google Scholar 

  5. Bender M., Drago J., and Rivkees S.A. (1997). D1 receptors mediate dopamine action in the fetal suprachiasmatic nuclei: studies of mice with targeted deletion of the D1 dopamine receptor gene. Mol Brain Res 49:271–277.

    Article  PubMed  CAS  Google Scholar 

  6. Berria M., DeSantis M., and Mead R.A. (1988). Effects of suprachiasmatic nuclear ablation and melatonin on delayed implantation in the spotted skunk. Neuroendocrinology 48:371–375.

    PubMed  CAS  Google Scholar 

  7. Berria M., DeSantis M., and Mead R.A. (1989). Lesions to the anterior hypothalamus prevent the melatonin-induced lengthening of delayed implantation. Endocrinology 125:2897–2904.

    PubMed  CAS  Google Scholar 

  8. Carter D.S. and Goldman B.D. (1983). Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): duration is the critical parameter. Endocrinology 113:1261–1267

    PubMed  CAS  Google Scholar 

  9. Cavallo A. and Ritschel W.A. (1996). Pharmacokinetics of melatonin in human sexual maturation. J Clin Endocrinol Metab 81:1882–1886.

    Article  PubMed  CAS  Google Scholar 

  10. Chan W.Y. and Ng T.B. (1995). Changes induced by pineal indoles in post-implantation mouse embryos. Gen Pharmacol 26:1113–1118.

    PubMed  CAS  Google Scholar 

  11. Claypool L.E., Wood R.I., Yellon S.M., and Foster D.L. (1989). The ontogeny of melatonin secretion in the lamb. Endocrinology 124:2135–2143.

    PubMed  CAS  Google Scholar 

  12. Coon S.L., Roseboom P.H., Baler R., Weller J.L., Namboodiri M.A.A., Koonin E.V., and Klein D.C. (1995). Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science 2701681–1683.

    PubMed  CAS  Google Scholar 

  13. Davis F.C. (1989). Use of postnatal behavioral rhythms to monitor prenatal circadian function. In: S.M. Reppert (Ed.) Development of Circadian Rhythmicity and Photoperiodism in Mammals, Perinatology Press, Ithaca NY, pp. 45–65.

    Google Scholar 

  14. Davis F.C. (1997). Melatonin: role in development. J Biol Rhythms 12:498–508.

    PubMed  CAS  Google Scholar 

  15. Davis F.C. and Gorski R.A. (1988). Development of hamster circadian rhythms: role of the maternal suprachiasmatic nucleus. J Comp Physiol [A] 162:601–610.

    CAS  Google Scholar 

  16. Davis F.C. and Mannion J. (1988). Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am J Physiol 255:R439–448.

    PubMed  CAS  Google Scholar 

  17. Dubocovich M.L. (1983). Melatonin is a potent modulator of dopamine release in the retina. Nature 306:782–784.

    Article  PubMed  CAS  Google Scholar 

  18. Duncan M.J. and Mead R.A. (1992). Autoradiographic localization of binding sites for 2-[125I]iodomelatonin in the pars tuberalis of the western spotted skunk (Spilogale putorius latifrons). Brain Res 569:152–155.

    Article  PubMed  CAS  Google Scholar 

  19. Duncan M.J. and Davis F.C. (1993). Developmental appearance and age related changes in specific 2-[125I]iodomelatonin binding sites in the suprachiasmatic nuclei of female Syrian hamsters. Dev Brain Res73:205–212.

    Article  CAS  Google Scholar 

  20. Ebling F.J., Wood R.I., Suttie J.M., Adel T.E., and Foster D.L. (1989). Prenatal photoperiod influences neonatal prolactin secretion in the sheep. Endocrinology 125:384–391.

    PubMed  CAS  Google Scholar 

  21. Foster D.L., Ebling F.J.P., Claypool L.E., and Wood R.I. (1989). Photoperiodic timing of puberty in sheep. In: S.M. Reppert (Ed.) Development of Circadian Rhythmicity and Photoperiodism in Mammals, Perinatology Press, Ithaca NY, pp. 103–153.

    Google Scholar 

  22. Gorman M.R., Ferkin M.H., and Dark J. (1994). Melatonin influences sex-specific prenatal mortality in meadow voles. Biol Reprod 51:873–878.

    Article  PubMed  CAS  Google Scholar 

  23. Grosse J., Velickovic A., and Davis F.C. (1996). Entrainment of Syrian hamster circadian activity rhythms by neonatal melatonin injections. Am J Physiol 270:R533–540.

    PubMed  CAS  Google Scholar 

  24. Heuther G., Poeggeler B., Reimer A., and George A. (1992). Effects of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci 51:945–953.

    Google Scholar 

  25. Horton T.H. (1984a). Growth and maturation of Microtus montanus: effects of photoperiods before and after weaning. Can J Zool 62:1741–1746.

    Article  Google Scholar 

  26. Horton T.H. (1984b). Growth and reproductive development of male Microtus montanus is affected by the prenatal photoperiod. Biol Reprod 31:499–504.

    Article  PubMed  CAS  Google Scholar 

  27. Horton T.H. (1985). Cross-fostering of voles demonstrates in utero effect of photoperiod. Biol Reprod 33:934–939.

    Article  PubMed  CAS  Google Scholar 

  28. Horton T.H., Ray S.L., and Stetson M.H. (1989). Maternal transfer of photoperiodic information in Siberian hamsters. III. Melatonin injections program postnatal reproductive development expressed in constant light. Biol Reprod 41:34–39.

    Google Scholar 

  29. Horton T.H., Stachecki S.A., and Stetson M.H. (1990). Maternal transfer of photoperiodic information in Siberian hamsters. IV. Peripubertal reproductive development in the absence of maternal photoperiodic signals during gestation. Biol Reprod 42:441–449.

    Article  PubMed  CAS  Google Scholar 

  30. Horton T.H., Ray S.L., Rollag M.D., Yellon S.M., and Stetson M.H. (1992). Maternal transfer of photoperiodic information in Siberian hamsters. V. Effects of melatonin implants are dependent on photoperiod. Biol Reprod 47:291–296.

    Article  PubMed  CAS  Google Scholar 

  31. Houghton D.C., Young I.R., and McMillen I.C. (1997). Photoperiodic history and hypothalamic control of prolactin secretion before birth. Endocrinology 138:1506–1511.

    Article  PubMed  CAS  Google Scholar 

  32. Kaplan J.B., Berria M., and Mead R.A. (1991). Prolactin levels in the western spotted skunk: changes during pre-and periimplantation and effects of melatonin and lesions to the anterior hypothalamus. Biol Reprod 44:991–997.

    Article  PubMed  CAS  Google Scholar 

  33. Karsch F.J., Bittman E.L., Foster D.L., Goodman R.L., Legan S.J., and Robinson J.E. (1984). Neuroendocrine basis of seasonal reproduction. Recent Prog Horm Res 40185–232.

    PubMed  CAS  Google Scholar 

  34. Klein D.C. (1972). Evidence for the placental transfer of 3 H-acetyl-melatonin. Nat New Biol 237:117–118.

    PubMed  CAS  Google Scholar 

  35. Lee T.M. and Zucker I. (1988). Vole infant development is influenced perinatally by maternal photoperiodic history. Am J Physiol 255:R831–838.

    PubMed  CAS  Google Scholar 

  36. Lee T.M., Smale L., Zucker I., and Dark J. (1987). Influence of daylength experienced by dams on post-natal development of young meadow voles (Microtus pennsylvanicus). J Reprod Fertil 81:337–342.

    PubMed  CAS  Google Scholar 

  37. Lee T.M., Spears N., Tuthill C.R., and Zucker I. (1989). Maternal melatonin treatment influences rates of neonatal development of meadow vole pups. Biol Reprod 40:495–502.

    Article  PubMed  CAS  Google Scholar 

  38. Lewy A.J., Tetsuo M., Markey S.P., Goodwin F.K., and Kopin I.J. (1980). Pinealectomy abolishes plasma melatonin in the rat. J Clin Endocrinol Metab 50:204–205.

    PubMed  CAS  Google Scholar 

  39. Lincoln G.A. and Clarke I.J. (1994). Photoperiodically-induced cycles in the secretion of prolactin in hypothalamo-pituitary disconnected rams: evidence for translation of the melatonin signal in the pituitary gland. J Neuroendocrinol 6:251–260.

    PubMed  CAS  Google Scholar 

  40. May R. and Mead R.A. (1986). Evidence for pineal involvement in timing implantation in the western spotted skunk. J Pineal Res 3:1–8.

    PubMed  CAS  Google Scholar 

  41. McConnell S.J., Tyndale-Biscoe C.H., and Hinds L.A. (1986). Change in duration of elevated melatonin concentration is the major factor in photoperiod response in the tammer, Macropus eugenii. J Reprod Fertil 7:623–632.

    Google Scholar 

  42. McElhinny A.S., Davis F.C., and Warner C.M. (1996). The effects of melatonin on cleavage rate on C57BL/6 and CBA/Ca preimplantation embryos cultured in vitro. J Pineal Res 21:44–48.

    PubMed  CAS  Google Scholar 

  43. McMillen I.C. and Nowak R. (1989). Maternal pinealectomy abolishes the diurnal rhythm in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. J Endocrinol 120:459–464.

    Article  PubMed  CAS  Google Scholar 

  44. McMillen I.C., Houghton D.C., and Young I.R. (1995). Melatonin and the development of circadian and seasonal rhythmicity. J Reprod Fertil Suppl 49:137–146.

    PubMed  CAS  Google Scholar 

  45. Murphy B.D., DiGregorio G.B., Douglas D.A., and Gonzalez-Reyna A. (1990). Interactions between melatonin and prolactin during gestation in mink (Mustela vison). J Reprod Fertil 89:423–429.

    PubMed  CAS  Google Scholar 

  46. Nowak R., Young I.R., and McMillen I.C. (1990). Emergence of the diurnal rhythm in plasma melatonin concentrations in newborn lambs delivered to intact or pinealectomized ewes. J Endocrinol 125:97–102.

    PubMed  CAS  Google Scholar 

  47. Novak C.M. and Nunez A.A. (1998). Tyrosine hydroxylase-and/or aromatic L-amino acid decarboxylase-containing cells in the suprachiasmatic nucleus of the Syrian hamster (Mesocricetus auratus). J Chem Neuroanat 14:87–94.

    Article  PubMed  CAS  Google Scholar 

  48. Reiter R.J. (1998). Melatonin and human reproduction. Ann Med 30:103–108.

    PubMed  CAS  Google Scholar 

  49. Renfree M.B., Lincoln D.W., Almeida O.F., and Short R.V. (1981). Abolition of seasonal embryonic diapause in a wallaby by pineal denervation. Nature 293:138–139.

    PubMed  CAS  Google Scholar 

  50. Reppert S.M. and Klein D.C. (1978). Transport of maternal [3H]-melatonin to suckling rats and the fate of [3H]-melatonin in the neonatal rat. Endocrinology 102:582–586.

    PubMed  CAS  Google Scholar 

  51. Reppert S.M. and Schwartz W.J. (1986a). Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J Neurosci 6:2724–2729.

    PubMed  CAS  Google Scholar 

  52. Reppert S.M. and Schwartz W.J. (1986b). Maternal endocrine extirpations do not abolish maternal coordination of the fetal circadian clock. Endocrinology 119:1763–1767.

    PubMed  CAS  Google Scholar 

  53. Reppert S.M. and Weaver D.R. (1989). Maternal transduction of light-dark information for the fetus. In: W.P. Smotherman and S.R. Robinson (Eds.) Behavior of the Fetus., Telford Press, Caldwell NJ, pp. 119–139.

    Google Scholar 

  54. Reppert S.M. and Weaver D.R. (1995). Melatonin madness. Cell 83:1059–1062.

    Article  PubMed  CAS  Google Scholar 

  55. Reppert S.M., Chez R.A., Anderson A., and Klein D.C. (1979). Maternal-fetal transfer of melatonin in the non-human primate. Pediatr Res 13:788–791.

    PubMed  CAS  Google Scholar 

  56. Reppert S.M., Weaver D.R., and Rivkees S.A. (1989). Prenatal function and entrainment of a circadian clock. In: S.M. Reppert (Ed.) Development of Circadian Rhythmicity and Photoperiodism in Mammals, Perinaology Press, Ithaca NY, pp. 25–44.

    Google Scholar 

  57. Rollag M.D., Dipinto M.N., and Stetson M.H. (1982). Ontogeny of the gonadal response of golden hamsters to short photoperiod, blinding, and melatonin. Biol Reprod 27:898–902.

    Article  PubMed  CAS  Google Scholar 

  58. Sandell M. (1990). The evolution of seasonal delayed implantation. Q Rev Biol 65:23–42.

    Article  PubMed  CAS  Google Scholar 

  59. Seron-Ferre M., Vergara M., Parraguez V.H., Riquelme R., and Llanos A.J. (1989). Fetal prolactin levels respond to a maternal melatonin implant. Endocrinology 125:400–403.

    PubMed  CAS  Google Scholar 

  60. Strother W.N., Norman A.B., and Lehman M.N. (1998). D1-dopamine receptor binding and tyrosine hydroxylase-immunoreactivity in the fetal and neonatal hamster suprachiasmatic nucleus. Dev Brain Res 106:137–144.

    Article  CAS  Google Scholar 

  61. Shaw D. and Goldman B.D. (1995a). Gender differences in influence of prenatal photoperiods on postnatal pineal melatonin rhythms and serum prolactin and follicle-stimulating hormone in the Siberian hamster (Phodopus sungorus). Endocrinology 136:4237–4246.

    PubMed  CAS  Google Scholar 

  62. Shaw D. and Goldman B.D. (1995b). Influence of prenatal photoperiods on postnatal reproductive responses to daily infusions of melatonin in the Siberian hamster (Phodopus sungorus). Endocrinology 136:4231–4236.

    PubMed  CAS  Google Scholar 

  63. Shaw D. and Goldman B.D. (1995c). Influence of prenatal and postnatal photoperiods on postnatal testis development in the Siberian hamster (Phodopus sungorus). Biol Reprod 52:833–838.

    Article  PubMed  CAS  Google Scholar 

  64. Stetson M.H., Elliott J.A., and Goldman B.D. (1986). Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters. Biol Reprod 34:664–669.

    Article  PubMed  CAS  Google Scholar 

  65. Stetson M.H., Ray S.L., Creyaufmiller N., and Horton T.H. (1989). Maternal transfer of photoperiodic information in Siberian hamsters. II. The nature of the maternal signal, time of signal transfer, and the effect of the maternal signal on peripubertal reproductive development in the absence of photoperiodic input. Biol Reprod 40:458–465.

    Article  PubMed  CAS  Google Scholar 

  66. Sugden D. (1983). Psychopharmacological effects of melatonin in mouse and rat. J Pharmacol Exp Ther 227:587–591.

    PubMed  CAS  Google Scholar 

  67. Tamarkin L., Reppert S.M., Orloff D.J., Klein D.C., Yellon S.M., and Goldman B.D. (1980). Ontogeny of the pineal melatonin rhythm in the Syrian (Mesocricetus auratus) and Siberian (Phodopus sungorus) hamsters and in the rat. Endocrinology 107:1061–1064.

    PubMed  CAS  Google Scholar 

  68. Underwood H. and Goldman B.D. (1987). Vertebrate circadian and photoperiodic systems: role of the pineal gland and melatonin. J Biol Rhythms 2:279–315.

    PubMed  CAS  Google Scholar 

  69. Velazquez E., Esquifino A.I., Zueco J.A., Ruiz Albusac J.M., and Blazquez E. (1992). Evidence that circadian variations of circulating melatonin levels in fetal and suckling rats are dependent on maternal melatonin transfer. Neuroendocrinology 55:321–326.

    PubMed  CAS  Google Scholar 

  70. Viswanathan N. and Davis F.C. (1997). Single prenatal injections of melatonin or the D1-dopamine receptor agonist SKF 38393 to pregnant hamsters sets the offsprings’ circadian rhythms to phases 180 degrees apart. J Comp Physiol [A] 180:339–346.

    Article  CAS  Google Scholar 

  71. Viswanathan N., Weaver D.R., Reppert S.M., and Davis F.C. (1994). Entrainment of the fetal hamster circadian pacemaker by prenatal injections of the dopamine agonist SKF 38393. J Neurosci 14:5393–5398.

    PubMed  CAS  Google Scholar 

  72. Waldhauser F., Weiszenbacher G., Frisch H., Zeitlhuber U., Waldhauser M., and Wurtman R.J. (1984). Fall in nocturnal serum melatonin during prepuberty and pubescence. Lancet 1:362–365.

    PubMed  CAS  Google Scholar 

  73. Weaver D.R. (1997). Melatonin: A “wonder drug” to wonder about. J Biol Rhythms 12:682–689.

    PubMed  CAS  Google Scholar 

  74. Weaver D.R. (1999). Melatonin and circadian rhythms in vertebrates: Physiological roles and pharmacological effects. In: F.W. Turek and P.C. Zee (Eds.) Neurobiology of Sleep and Circadian Rhythms, Marcel Dekker, 197–262.

    Google Scholar 

  75. Weaver D.R. and Reppert S.M. (1986). Maternal melatonin communicates daylength to the fetus in Djungarian hamsters. Endocrinology 119:2861–2863.

    PubMed  CAS  Google Scholar 

  76. Weaver D.R. and Reppert S.M. (1989a). Periodic feeding of SCN-lesioned pregnant rats entrains the fetal biological clock. Dev Brain Res 46:291–296.

    Article  CAS  Google Scholar 

  77. Weaver D.R. and Reppert S.M. (1989b). Maternal communication of daylength information to the fetus. In: S.M. Reppert (Ed.) Development of Circadian Rhythmicity and Photoperiodism in Mammals, Perinatology Press, Ithaca NY, pp. 209–219.

    Google Scholar 

  78. Weaver D.R. and Reppert S.M. (1995). Definition of the developmental transition from dopaminergic to photic regulation of c-fos gene expression in the rat suprachiasmatic nucleus. Mol Brain Res 33:136–148.

    Article  PubMed  CAS  Google Scholar 

  79. Weaver D.R., Keohan J.T., and Reppert S.M. (1987). Definition of a prenatal sensitive period for maternal-fetal communication of day length. Am J Physiol253:E701–704.

    PubMed  CAS  Google Scholar 

  80. Weaver D.R., Namboodiri M.A.A., and Reppert S.M. (1988). Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Lett 228:123–127.

    Article  PubMed  CAS  Google Scholar 

  81. Weaver D.R., Rivkees S.A., and Reppert S.M. (1992). D1-dopamine receptors activate c-fos expression in the fetal suprachiasmatic nuclei. Proc Natl Acad Sci USA 89:9201–9204.

    PubMed  CAS  Google Scholar 

  82. Weaver D.R., Roca A.L., and Reppert S.M. (1995). c-fos and jun-B mRNAs are transiently expressed in fetal rodent suprachiasmatic nucleus following dopaminergic stimulation. Dev Brain Res 85:293–297.

    Article  CAS  Google Scholar 

  83. Wilson M.E. and Gordon T.P. (1989). Short-day melatonin pattern advances puberty in seasonally breeding rhesus monkeys (Macacamulatta). J Reprod Fertil 86:435–444.

    PubMed  CAS  Google Scholar 

  84. Yellon S.M. and Goldman B.D. (1984). Photoperiodic control of reproductive development in the male Djungarian hamster (Phodopus sungorus). Endocrinolgy 114:664–470.

    Article  CAS  Google Scholar 

  85. Yellon S.M. and Foster D.L. (1986). Melatonin rhythms time photoperiod-induced puberty in the female lamb. Endocrinology 119:44–49.

    PubMed  CAS  Google Scholar 

  86. Yellon S.M. and Longo L.D. (1987). Melatonin rhythms in fetal and maternal circulation during pregnancy in sheep. Am J Physiol 252:E799–802.

    PubMed  CAS  Google Scholar 

  87. Yellon S.M. and Longo L.D. (1988). Effect of maternal pinealectomy and reverse photoperiod on the circadian melatonin rhythm in the sheep and fetus during the last trimester of pregnancy. Biol Reprod 39:1093–1099.

    Article  PubMed  CAS  Google Scholar 

  88. Young I.M., Francis P.L., Leone A.M., Stovell P., and Silman R.E. (1988). Constant pineal output and increasing body mass account for declining melatonin levels during human growth and sexual maturation. J Pineal Res 5:71–85.

    PubMed  CAS  Google Scholar 

  89. Zemdegs I.Z., McMillen I.C., Walker D.W., Thorburn G.D., and Nowak R. (1988). Diurnal rhythms in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. Endocrinology 123:284–289.

    Article  PubMed  CAS  Google Scholar 

  90. Zisapel N., Egozi Y., and Laudon M. (1982). Inhibition of dopamine release by melatonin: regional distribution in the rat brain. Brain Res 246:161–163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Weaver, D.R. (2002). The Roles of Melatonin in Development. In: Olcese, J. (eds) Melatonin After Four Decades. Advances in Experimental Medicine and Biology, vol 460. Springer, Boston, MA. https://doi.org/10.1007/0-306-46814-X_22

Download citation

  • DOI: https://doi.org/10.1007/0-306-46814-X_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46134-7

  • Online ISBN: 978-0-306-46814-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics