Skip to main content

Intrinsic Glutaminergic System Negatively Regulates Melatonin Synthesis in Mammalian Pineal Gland

  • Chapter
Melatonin After Four Decades

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 460))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod J. The pineal gland: a neurochemical transducer. Science 184:1341–1348 (1974).

    PubMed  CAS  Google Scholar 

  2. Klein D.C. Photoneural regulation of the mammalian pineal gland, in Ciba Foundation Symposium 117: Photoperiodism, melatonin, and the pineal gland (Evered D. and Clark S., eds.): pp. 38–56 Pitman London (1985).

    Google Scholar 

  3. Reiter R.J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Rev. 12:151–180 (1991).

    Article  CAS  Google Scholar 

  4. Foulkes N.S., Borjigin J., Snyder S.H., and Sassone-Corsi P. Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends. Neurosci. 20:487–492 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. Moriyama Y. and Yamamoto A. Microvesicles isolated from bovine pineal gland specifically accumulate L-glutamate. FEBS Lett. 367:233–236 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Moriyama Y. and Yamamoto A. Vesicular L-glutamate transporter in microvesicles from bovine pineal glands: driving force, mechanism of chloride anion-activation, and substrate specificity. J. Biol. Chem. 270:22314–22320 (1995).

    PubMed  CAS  Google Scholar 

  7. Moriyama Y., Yamamoto A., Yamada H., Tashiro Y., and Futai M. Role of endocrine cell microvesicles in intercellular chemical transduction. Biol. Chem. 377:155–165 (1996).

    CAS  Google Scholar 

  8. Thomas-Reetz A. and De Camilli F? A role for synaptic vesicles in non-neuronal cells: clues from pancreatic β cells and from chromaffin cells. FASEB J. 8:209–216 (1994).

    PubMed  CAS  Google Scholar 

  9. Reiter R.J. The mammalian pineal gland: structure and function. Am. J. Anat. 162:287–313 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. Redecker P. and Bargsten G. Synaptophysin—a common constituent of presumptive secretory microvesicles in the mammalian pinealocyte: a study of rat and gerbil pineal glands. J. Neurosci. Res. 34:79–96 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. Hayashi M., Yamamoto A., Yatsushiro S., Yamada H., Futai M., Yamaguchi A., and Moriyama Y. Synaptic protein SV2B, but not SV2A, is predominantly expressed and associated with microvesicles in rat pinealocytes. J. Neurochem. 71:356–365 (1998).

    PubMed  CAS  Google Scholar 

  12. Moriyama Y., Yamamoto A., Tagaya M., Tashiro Y., and Michibata H. Localization of N-ethylmaleimide-sensitive fusion protein in pinealocytes. NeuroReport 6:1757–1760 (1995).

    PubMed  CAS  Google Scholar 

  13. Yamada H.,Yamamoto A.,Takahashi M., Michibata H., Kumon H., and Moriyama Y. The L-type Ca2+ channel is involved in microvesicle-mediated glutamate exocytosis from rat pinealocytes. J. Pineal Res. 21:165–174 (1996).

    PubMed  CAS  Google Scholar 

  14. Yamada H., Yamamoto A., Yodozawa S., Kozaki S., Takahashi M., Michibata H., Morita M., Furuichi T., Mikoshiba K., and Moriyama Y. Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like signal transduction mechanism and inhibits melatonin secretion in rat pinealocytes. J. Pineal Res. 21:175–191 (1996).

    PubMed  CAS  Google Scholar 

  15. Yatsushiro S., Yamada H., Kozaki S., Kumon H., Michibata H., Yamamoto A., and Moriyama Y. L-Aspartate but not the D form is secreted through microvesicle-mediated exocytosis and is sequestered through Na+-dependent transporter in rat pinealocytes. J. Neurochem. 69:340–347 (1997).

    PubMed  CAS  Google Scholar 

  16. Yamada H., Yastushiro S., Ishio S., Hayashi M., Nishi T., Yamamoto A., Futai M., Yamaguchi A., and Moriyama Y. Metabotropic glutamate receptors negatively regulate melatonin synthesis in rat pinealocytes. J. Neuroscience 18:2056–2062 (1998).

    CAS  Google Scholar 

  17. Yamada H., Yamaguchi A., and Moriyama Y. L-Aspartate-evoked inhibition of melatonin production in rat pineal glands. Neurosci. Lett. 228:103–108 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Ishio S., Yamada H., Hayashi M., Yatsushiro S., Noumi T., Yamaguchi A., and Moriyama Y. D-Aspartate modulates melatonin synthesis in rat pinealocytes. Neurosci. Lett. 249:143–146 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. Tanabe Y., Masu M., Ishii T., Shigemoto R., and Nakanishi S. A family of metabotropic glutamate receptors. Neuron 8:169–179 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi Y., Tanabe Y., Aramori I., Masu M., Shimamoto K., Ohfune Y., and Nakanishi S. Agonist analysis of 2-(carboxycyclopropyl) glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 107:539–543 (1992).

    PubMed  CAS  Google Scholar 

  21. Hayashi Y., Momiyama A., Takahashi T., Ohishi H., Ogawa-Meguro R., Shigemoto R., Mizuno N., and Nakanishi S. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366:687–690 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. Hayashi Y., Sekiyama N., Nakanishi S., Jane D.E., Sunter D.C., Birse E.F., Udvarhelyi PM., and Watkins J.C. Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J. Neuroscience 14:3370–3377 (1994).

    CAS  Google Scholar 

  23. Tanabe Y., Nomura A., Masu M., Shigemoto R., Mizuno N., and Nakanishi S. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neuroscience 13:1372–1378 (1993).

    CAS  Google Scholar 

  24. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603 (1992).

    PubMed  CAS  Google Scholar 

  25. Riedel G. Function of metabotropic glutamate receptors in learning and memory. Trends in Neuroscience 19:219–223 (1996).

    CAS  Google Scholar 

  26. Kanner B. and Schuldiner S. Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22:1–38 (1987).

    PubMed  CAS  Google Scholar 

  27. Kanner B.I. Glutamate transporters from brain. A novel neurotransmitter transporter family. FEBS Lett. 325:95–99 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. Kanai Y., Smith C.P., and Hediger M.A. A new family of neurotransmitter transporters: the high affinity glutamate transporters. FASEB. J. 7:1450–1459 (1993).

    PubMed  CAS  Google Scholar 

  29. Yamada H., Yatsushiro S., Yamamoto A., Nishi T., Futai M., Yamaguchi A., and Moriyama Y. Functional expression of GLT-1 type Na+-dependent glutamate transporter in rat pinealocytes. J. Neurochem. 69:1491–1498(1997).

    PubMed  CAS  Google Scholar 

  30. Danbolt N.C., Storm-Mathisen J., and Kanner B.I. An [Na+ +K+] coupled L-glutamate transporter purified from brain is located in glial cell processes. Neuroscience 51:295–310 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. Rothstein J.D., Martin L., Levey A.I., Dykes-Hoberg M., Jin L., Wu D., Nash N., and Kuncl R.W. Localization of neuronal and glial glutamate transporter. Neuron 13:713–725 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. Lehre K.P., Levy L.M., Ottersen O.P., Storm-Mathisen J., and Danbolt N.C. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J.Neuroscience 15:1835–1853 (1995).

    CAS  Google Scholar 

  33. Yamada H., Ogura A., Yamaguchi A., and Moriyama Y. Acetylcholine triggers L-glutamate exocytosis via nicotinic receptors and inhibits melatonin synthesis in rat pinealocytes. J. Neuroscience 18:4946–4952 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moriyama, Y., Yamada, H., Hayashi, M., Yatsushiro, S. (2002). Intrinsic Glutaminergic System Negatively Regulates Melatonin Synthesis in Mammalian Pineal Gland. In: Olcese, J. (eds) Melatonin After Four Decades. Advances in Experimental Medicine and Biology, vol 460. Springer, Boston, MA. https://doi.org/10.1007/0-306-46814-X_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46814-X_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46134-7

  • Online ISBN: 978-0-306-46814-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics