Skip to main content

Ubiquinol an Endogenous Lipid-Soluble Antioxidant in Animal Tissues

  • Chapter
Reactive Oxygen Species in Biological Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ă…berg, F., Appelkvist, E.-L., Dallner, G., and Ernster, L., 1992, Distribution and redox state of ubiquinones in rat and human tissues, Arch. Biochem. Biophys. 295:230–234.

    PubMed  Google Scholar 

  • Ă…berg,, Zhang, Y., Appelkvist, E.-L., and Dallner, G., 1994, Effects of clofibrate, phthalatcs and probucol on uhiquinone levels, Chem. Biol. Interact. 91:1–14.

    PubMed  Google Scholar 

  • Ă…berg, F., Zhang, Y., Teclebrhan, H., Appelkvist, E.-L.. and Dallner, G., 1996, Increases in tissue levels of ubiquinone in association with peroxisome proliferation, Chem. Biol. Interact. 99:205–218.

    PubMed  Google Scholar 

  • Aiyar, A. S., and Olson, R. E., 1972, Enhancementof ubiquinone-9 biosynthesis in rat-liver slices by exogenous mevalonate, Eur J. Biochem. 27:60–64.

    Article  CAS  PubMed  Google Scholar 

  • Alleva, R., Tomasetti, M., Battino, M., Curatola, G., Littarru, G. P., and Folkers, K., 1995, The roles of coenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions, Proc. Natl. Acad. Sci. USA 92:9388–9391.

    CAS  PubMed  Google Scholar 

  • AndrĂ©e, P., 1996, Oxidative stress and mitochondrial function. Role of ubiquinol as antioxidant, Doctoral thesis, Karolinska Institute.

    Google Scholar 

  • Appelkvist, E.-L., Edlund, C., Löw, P., Schedin, S., KalĂ©n, A., and Dallner, G., 1993, Effect of inhibitors of hydroxymethylglutaryl coenzyme A reductase on coenzyme Qand dolichol biosynthesis, Clin. Invest. 71:S97–S102.

    Article  CAS  Google Scholar 

  • Atar, D., Mortensen, S. A., Flachs, H., and Herzog, W. R., 1993, Coenzyme Q10 protects ischemic myocardium in an open-chest swine model, Clin. Invest. 71:S103–S111.

    Article  CAS  Google Scholar 

  • Bäckström, D., Norling, B., Ehrenberg, A., and Ernster, L., 1970, Electron spin resonancemeasurement on ubiquinone-depletedand ubiquinone-replenished submitochondrial particles, Biochim. Biophys. Acta 197:108–111.

    PubMed  Google Scholar 

  • Baxter, A., Fitzgerald, B. J., Hutson, J. L., McCarthy, A. D., Motteran, J. M., Ross, B. C., Sapra, M., Snowden, M. A., Watson, N. S., Williams, R. J., and Wright, C., 1992, Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo, J. Biol. Chem. 267:11705–11708.

    CAS  PubMed  Google Scholar 

  • Bet, L., Bresolin, N., Binda, A., Nador, F., and Ferrante, C., 1987, Cardiac improvement after coenzyme Q10 treatment with Kearns-Sayre syndrome, Neurology 37:202–204.

    Google Scholar 

  • Beyer, K., and Klingenberg, M., 1985, ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by31 P nuclear magnetic resonance, Biochemistry 24:3821–3826.

    CAS  PubMed  Google Scholar 

  • Beyer, R. E., and Ernster, L., 1990, The antioxidant role of coenzyme Q, in High in Ubiquinone Research (G. Lenaz, O. Barnabei, A. Rabbi, and M. Battino, eds.), pp.191–213, Taylor & Francis, London.

    Google Scholar 

  • Beyer, R. E., Noble, W. M., and Hirschfield, T. J., 1962, Coenzyme Q (ubiquinone) levels of tissues of rats during acclimation to cold, Can. J. Biochem. Physiol. 40:511–518.

    CAS  PubMed  Google Scholar 

  • Beyer, R. E., Morales-Corral, P. G., Ramp, B. J., Kreitman, K. R., Falzon, M. J., Rhee, S. Y., Kuhn, T. W., Stein, M., Rosenwasser, M. J., and Cartwright, K. J., 1984, Elevation of tissue coenzyme Q (ubiquinone) and cytochrome c concentrations by endurance exercise in the rat, Arch. Biochem. Biophys. 234:323–329.

    Article  CAS  PubMed  Google Scholar 

  • Beyer, R. E., Burnett, B. A., Cartwright, K. J., Edington, D. W., Falzon, M. J., Kreitman, K. R., Kuhn, T. W., Ramp, B. J., Rhee, S. Y., and Rosenwasser, M. J., 1985, Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat, Mech. Ageing Dev. 32:267–281.

    Article  CAS  PubMed  Google Scholar 

  • Beyer, R. E., Segura Aguilar, J., DiBernardo, S., Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M. C., Setti, M., Landi, L., and Lenaz, G., 1996, The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q inmembrane systems, Proc. Natl. Acad. Sci. USA 93:2528–2532.

    Article  CAS  PubMed  Google Scholar 

  • Boveris, A., and Chance, B., 1973, The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaricoxygen, Biochem. J. 134:707–716.

    CAS  PubMed  Google Scholar 

  • Boveris, A., Ramos, M. C. P., Stoppani, A. O. M., and Foglia, V. G., 1969, Phosphorylation, oxidation and ubiquinone content in diabetic mitochondria, Proc. Soc. Exp. Biol. Med. 132:170–174.

    Google Scholar 

  • Bowyer, J. R., and Trumpower, B. L., 1981, Rapid reduction of cytochrome c1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome bc1 segment of the mitochondrial respiratorychain, J. Biol. Chem. 256:2245–2251.

    CAS  PubMed  Google Scholar 

  • Boyer, P. D., 1993, The binding change mechanism for ATP synthase-Some probabilities and possibilities, Biochim. Biophys. Acta 1140:215–250.

    CAS  PubMed  Google Scholar 

  • Burdon, R. H., 1995, Superoxide and hydrogen peroxide in relation to mammalian cell proliferation, Free Radical Biol. Med. 4:775–794.

    Google Scholar 

  • Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O., 1977, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria, Arch. Biochem. Biophys. 180:248–257.

    Article  CAS  PubMed  Google Scholar 

  • Cadenas, E., Hochstein, P., and Ernster, L., 1992, Pro-and antioxidant functions of quinones and quinone reductases inmammaliancells, Adv. Enzymol. 65:97–146.

    CAS  PubMed  Google Scholar 

  • Chance, B., Sies, H., and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59:527–605.

    CAS  PubMed  Google Scholar 

  • Crane, F. L., and MorrĂ©, D. J., 1977, Evidence for coenzyme Q function in Golgi membranes, in Biomedical and Clinical Aspects of Coenzyme Q, Vol.1 (K. Folkers and Y. Yamamura, eds.), pp. 3–14, Elsevier, Amsterdam.

    Google Scholar 

  • Crane, F. L., and Sun, S. E. E., 1993, The essential functions of coenzyme Q, Clin. Invest. 71:S55–S59.

    Article  CAS  Google Scholar 

  • Crane, F. L., Hatefi, Y., Lester, R. L., and Widmer, C., 1957, Isolation of a quinone from beef heart mitochondria, Biochim. Biophys. Acta 25:220–221.

    Article  CAS  PubMed  Google Scholar 

  • Crane, F. L., Sun, I. L., Clark, M. G., Grebing, C., and Löw, H., 1985, Transplasma-membrane redox systems in growth and development, Biochim. Biophys. Acta 811:233–264.

    CAS  PubMed  Google Scholar 

  • Crawford, D. R., and Schneider, D. L., 1982, IdentifĂ¯cation of ubiquinone-10 in human neutrophils and its role in microbicidal events, J. Biol. Chem. 257:6662–6668.

    CAS  PubMed  Google Scholar 

  • Cutler, R. G., 1985, Peroxide-producing potential of tissues: Inverse correlation with longevity of mammalian species, Proc. Natl. Acad. Sci.USA 82:4798–4802.

    CAS  PubMed  Google Scholar 

  • Danielson, L., and Ernster, L., 1963, Demonstration of a mitochondrial energy-dependent pyridine nucleotide transhydrogenase reaction, Biochem. Biophys. Res. Commun. 10:91–96.

    CAS  PubMed  Google Scholar 

  • Davies, K. J. A., 1987, Protein damage and degradation by oxygen radicals. I. General aspects, J. Biol. Chem. 262:9895–9901.

    CAS  PubMed  Google Scholar 

  • Davies, K. J. A., and Delsignore, M. E., 1987, Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure, J. Biol. Chem. 262:9908–9913.

    CAS  PubMed  Google Scholar 

  • Davies, K. J. A., and Hochstein, P., 1982, Ubisemiquinone radicals in liver: Implications for a mitochondrial Q cycle in vivo, Biochem. Biophys. Res. Commun. 107:1292–1299.

    CAS  PubMed  Google Scholar 

  • Davies, K. J. A., Delsignore, M. E., and Lin, S. W., 1987a, Protein damage and degradation by oxygen radicals. II. Modification of ammo acids, J. Biol. Chem. 262:9902–9907.

    CAS  PubMed  Google Scholar 

  • Davies, K. J. A., Lin, S. W., and Pacifici, R. E., 1987b, Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein, J. Biol. Chem. 262:9914–9920.

    CAS  PubMed  Google Scholar 

  • Edlund, C., Söderberg, M., and Kristensson, K., 1994, Isoprenoids in aging and neurodegeneration, Neurochem. Int. 25:35–38.

    Article  CAS  PubMed  Google Scholar 

  • Eggens, I., Elmberger, P. G., and Löw, P., 1989, Polyisoprenoid, cholesteroland ubiquinone levels in human hepatocellular carcinomas, Br. J. Exp. Pathol. 70:83–92.

    CAS  PubMed  Google Scholar 

  • Elmberger P. G., KalĂ©n A., Brunk, U. T. and Dallner G., 1989, Discharge of newly-synthesized dolichol and ubiquinone with lipoproteins to ratliver perfusate and to thebile, Lipids 24:919–930.

    CAS  PubMed  Google Scholar 

  • Elmberger, P. G., Kaln, A., Lund, E., ReinhĂ©r, E., Eriksson, M., Berglund, L., Angelin, B., and Dallner, G., 1991, Effects of pravastatin and cholestyramine on products of the mevalonate pathway in familial hypercholesterolemia, J. Lipid Res. 32:935–940.

    CAS  PubMed  Google Scholar 

  • Ericsson, J., and Dallner, G., 1993, Distribution, biosynthesis, and function of mevalonate pathway lipids, in Subcellular Biochemistry, Vol. 21: Endoplasmic Reticulum (N. Borgese and J. R. Harris, eds.), pp. 229–272, Plenum Press, New York.

    Google Scholar 

  • Ernster, L., 1993, Lipid peroxidation in biological membranes: Mechanisms and implications, in Active Oxygens, Lipid Peroxides, and Antioxidants (K. Yagi, ed.), (Tokyo: Japan Sci. Soc. Press, and Boca Raton: CRC Press), pp. 1–38.

    Google Scholar 

  • Ernster, L., 1994, Ubiquinol as a biological antioxidant: A review, in Oxidative Processes and Antioxidants (R. Paoletti, B. Samuelsson, A. L. Catapano, A. Poli, and M. Rinetti, eds.), pp. 185–198, Raven Press, New York.

    Google Scholar 

  • Ernster, L., and Dallner, G., 1995, Biochemical, physiological and medical aspects of ubiquinone function, Biochim. Biophys. Ada 1271:195–204.

    Google Scholar 

  • Ernster, L., Lee, I. Y, Norling, B., and Persson, B., 1969, Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b, Eur. J. Biochem. 9:299–310.

    Article  CAS  PubMed  Google Scholar 

  • Ernster, L., Forsmark, P., and Nordenbrand, K., 1992, The mode of action of lipid-soluble antioxidants in biological membranes: Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles, BioFactors 3:241–248.

    CAS  PubMed  Google Scholar 

  • Esterbauer, H., Zollner, H., and Schaur, R. J., 1990, Aldehydes formed by lipid peroxidation: Mechanisms of formation, occurrence and determination, in Membrane Lipid Oxidation, Vol. I. (C. D. Vigo-Pelfrey, ed.), pp. 239–283, CRC Press, Boca Raton.

    Google Scholar 

  • Esterbauer, H., Schaur, R. F., and Zollner, H., 1991, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes, Free Radical Biol. Med. 11:81–128.

    Article  CAS  Google Scholar 

  • Eto, Y., Kang, D., Hasegawa, E., Takeshige, K., and Minakami, S., 1992, Succinate-dependent lipid peroxidation and its prevention by reduced ubiquinone in beef heart submitochondrial particles, Arch. Biochem. Biophys. 295:101–106.

    Article  CAS  PubMed  Google Scholar 

  • Festenstein, G. N., Heaton, F. W., Lowe, J. S., and Morton, R. A., 1955, A constituent of the unsaponifiable portion of animal tissue lipids, Biochem. J. 59:558–566.

    CAS  PubMed  Google Scholar 

  • Fischer, J. C., Ruitenbeck, W., Gabreels, F. J. M., Janssen, A. J. M., Renier, W. O., Sengers, R. C. A., Stadhouders, A. M., ter Lak, H. J., Trijbels, J. M. F., and Veerkamp, J. H.,1986, A mitochondrial encephalomyopathy: The first case with an established defect at the level of coenzyme Q10, Eur. J. Pediatr. 144:441–447.

    Google Scholar 

  • Floridi, A., Castiglione, S., and Bianchi, C., 1989, Sites of inhibition of mitochondrial electron transport by rhein, Biochem.Pharmacol. 38:743–751.

    Article  CAS  PubMed  Google Scholar 

  • Floyd, R. A., Watson, J. J., Wong, P. K., Altmiller, D. H., and Rickard, R. C., 1986, Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation, Free Radical Res. Commun. 1:163–172.

    CAS  Google Scholar 

  • Folkers, K., Langsjoen, P., Willis, R., Richardson, P., Xia, L. J., Ye, C. Q., and Tamagawa, H., 1990, Lovastatin decreases coenzyme Q levels in humans, Proc. Natl. Acad. Sci. USA 87:8931–8934.

    CAS  PubMed  Google Scholar 

  • Forsmark, P., Ă…berg, F., Norling, B., Nordenbrand, K., Dallner, G., and Ernster, L., 1991, Inhibition of lipid peroxidation by ubiquinol in submitochondrial particles in the absence of vitamin E, FEBS Lett. 285:39–45.

    Article  CAS  PubMed  Google Scholar 

  • Forsmark-AndrĂ©e, P., and Ernster, L., 1994, Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation, Mol. Aspects Med. 15:S73–S81.

    PubMed  Google Scholar 

  • Forsmark-AndrĂ©e, P., Dallner, G., and Ernster, L., 1995, Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles, Free RadicalBiol.Med. 19:749–757.

    Google Scholar 

  • Forsmark-AndrĂ©e, P., Persson, B., Radi, R., Dallner, G., and Ernster, L., 1996, Oxidative modification of mitochondrial nicotinamide nucleotide transhydrogenase in submitochondrial particles, Effect of endogenous ubiquinol Arch. Biochem. Biophys. 336:113–120.

    PubMed  Google Scholar 

  • Forsmark-AndrĂ©e, P., Lee, C. P., Dallner, G., and Ernster, L., 1997, Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles, Free Radical Biol. Med. 22:391–400.

    Article  Google Scholar 

  • Giulivi, C., Boveris, A., and Cadenas, E., 1995, Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydeoxyguanosine in mitochondrial DNA, Arch. Biochem. Biophys. 316:909–916.

    Article  CAS  PubMed  Google Scholar 

  • Glinn, M., Ernster, L., and Lee, C. P., 1991, Initiation of lipid peroxidation in submitochondrial particles: Effects of respiratory inhibitors, Arch. Biochem. Biophys. 290:57–65.

    Article  CAS  PubMed  Google Scholar 

  • Glinn, M., Lee, C. P., and Ernster, L., 1997, Pro-and anti-oxidant activities of the mitochondrial respiratory chain: Factors influencing NAD(P)H-induced lipid peroxidation, Biochim. Biophys. Acta 1318:246–254.

    CAS  PubMed  Google Scholar 

  • Goda, S., Hamada, T., Ishimoto, S., Kobayashi, T., Goto, I., and Kuroiwa, Y, 1987, Clinical improvement after administration of coenzyme Q10 in a patient with mitochondrial encephalomyopathy, J. Neurol. 234:62–63.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, J. L., and Brown, M. S., 1990, Regulation of the mevalonate pathway, Nature 343:425–430.

    Article  CAS  PubMed  Google Scholar 

  • Grant, A. J., Jessup, W., and Dean, R. T., 1993, Enhanced enzymatic degradation of radical damaged mitochondrial membrane components, Free Radical Res. Commun. 19:125–134.

    CAS  Google Scholar 

  • GrĂ¼nler, J., Ericsson, J., and Dallner, G., 1994, Branch-point reactions in the biosynthesis of cholesterol, dohchol, ubiquinone and prenylated proteins, Biochim. Biophys. Acta 1212:259–277.

    PubMed  Google Scholar 

  • Guan, Z., Söderberg, M., Sindelar, P., Prusiner, S. B., Kristensson, K., and Dallner, G., 1996, Lipid composition in scrapie-infected mouse brain: Prion infection increases the levels of dolichyl phosphate and ubiquinone, J. Neurochem. 66:277–285.

    CAS  PubMed  Google Scholar 

  • Halliwell, B., and Auroma, O. I., 1991, DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems, FEES Lett. 281:9–19.

    Article  CAS  Google Scholar 

  • Hanaki, Y., Sugiyama, S., Ozawa, T., and Ohno, M., 1991, Ratio oflow-density lipoprotein cholesterol to ubiquinone as a coronary risk factor, N. Engl. J. Med. 325:814–815.

    CAS  PubMed  Google Scholar 

  • Hanaki, Y., Sugiyama, S., Ozawa, T., and Ohno, M., 1993, Coenzyme Q10 and coronary artery disease, Clin. Invest. 71:S112–S115.

    CAS  Google Scholar 

  • Harman, D., 1981, The aging process, Proc. Natl. Acad. Sci. USA 78:7124–7128.

    CAS  PubMed  Google Scholar 

  • Harman, D., 1994, Aging: Prospects for further increases in the functional life span, Age 17:119–146.

    CAS  Google Scholar 

  • Hasegawa, E., Takeshige, K., Oishi, T., Murai, Y., and Minakami, S., 1990, l-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles, Biochem. Biophys. Res. Commun. 170:1049–1055.

    Article  CAS  PubMed  Google Scholar 

  • Hatefi, Y., and Yamaguchi, M., 1992, The energy-transducing nicotinamide nucleotide transhydrogenase, in Molecular Mechanisms in Bioenergetics (L. Ernster, ed.), pp. 265–281, Elsevier, Amsterdam.

    Google Scholar 

  • Hatefi, Y., and Yamaguchi, M., 1996, Nicotinamide nucleotide transhydrogenase: A model for utilization of substrate binding energy for proton translocation, FASEB J. 10:444–452.

    CAS  PubMed  Google Scholar 

  • Hochstein, P., and Ernster, L., 1963, ADP-activated lipid peroxidation coupled to the TPNH oxidase system of microsomes, Biochem. Biophys. Res. Commun. 12:388–394.

    Article  CAS  PubMed  Google Scholar 

  • Hochstein, P., Nordenbrand, K., and Ernster, L., 1964, Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria, Biochem. Biophys. Res. Commun. 14:323–328.

    Article  CAS  PubMed  Google Scholar 

  • Hoek, J. B., and Rydström, J., 1988, Physiological roles of nicotinamide nucleotide transhydrogenase, Biochem. J. 254:1–10.

    CAS  PubMed  Google Scholar 

  • HĂ¼bner, C., Hoffmann, G. F., Charpentier, C., Gibson, K. M., Finckh, B., Puhl, H., Lehr, H. A., and Kohlschutter, A., 1993, Decreased plasma ubiquinone-10 concentration in patients with mevalonate kinase deficiency, Pediatr. Res. 34:129–133.

    PubMed  Google Scholar 

  • Imada, I., Watanabe, M., Matsumoto, N., and Morimoto, H., 1970, Metabolism of ubiquinone-7, Biochemistry 9:2870–2878.

    Article  CAS  PubMed  Google Scholar 

  • Ingledew, W. J., and Ohnishi, T., 1977, The probable site of action of thenoyltrifluoracetone on the respiratory chain, Biochem. J. 164:617–620.

    CAS  PubMed  Google Scholar 

  • Jayaraman, J., and Ramasarma, T., 1963, Intracellular distribution of coenzyme Q in rat liver, Arch. Biochem. Biophys. 103:258–266.

    Article  CAS  PubMed  Google Scholar 

  • Kagan, V., Serbinova, E., and Packer, L., 1990, Antioxidant effectsofubiquinonesinmicrosomesand mitochondria are mediated by tocopherol recycling, Biochem. Biophys. Res. Commun. 169:851–857.

    Article  CAS  PubMed  Google Scholar 

  • KalĂ©n, A., Norling, B., Appelkvist, E.-L., and Dallner, G., 1987, Ubiquinone biosynthesis by themicrosomal fraction from rat liver, Biochim. Biophys. Acta 926:70–8.

    PubMed  Google Scholar 

  • KalĂ©n, A., Appelkvist, E.-L., and Dallner, G., 1989, Age-related changes in the lipid compositions of rat and human tissues, Lipids 24:579–584.

    PubMed  Google Scholar 

  • KalĂ©n, A., Appelkvist, E.-L., and Dallner, G., 1990, The effects of inducers of the endoplasmic reticulum, peroxisomes and mitochondria on the amounts and synthesis of ubiquinone in rat liver subcellular membranes, Chem. Biol. Interact. 73:221–234.

    PubMed  Google Scholar 

  • Karlsson, J., Liska, J., Gunnes, S., Koul, B., Semb, B., Ă…ström, H., Diamant, B., and Folkers, K., 1993, Heart muscle ubiquinone and plasma anlioxidants following cardiac transplantation, Clin. Invest. 71:S76–S83.

    CAS  Google Scholar 

  • Katsikas, H., and Quinn, P. J., 1983, Fluorescence probe studies of the distribution of ubiquinone homologues in bilayers of dipalmitoylglycerophosphocholine, Eur. J. Biochem. 131:607–612.

    Article  CAS  PubMed  Google Scholar 

  • King, T. E., 1982, Ubiquinone proteins in cardiac mitochondria, in Functions of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.), pp. 3–25, Academic Press, New York.

    Google Scholar 

  • Kröger, A., and Klingenberg, M., 1970, Quinones and nicotinamide nucleotides as sociated with electron transfer, Vitam. Horm. 28:533–574.

    PubMed  Google Scholar 

  • Kröger, A., and Klingenberg, M., I973a, The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain, Eur. J. Biochem. 34:358–368.

    Google Scholar 

  • Kröger, A., and Klingenberg, M., 1973b, Further evidence for the poolfunction of ubiquinone as derived from the inhibition of the electron transport by antimycin, Eur. J. Biochem. 39:313–323.

    PubMed  Google Scholar 

  • Lang, J. K., Gohil, K., and Packer, L., 1986, Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions, Anal. Biochem. 157:106–116.

    Article  CAS  PubMed  Google Scholar 

  • Loschen, G., and FlohĂ©, L., 1971, Respiratory chain linked H2O2 production in pigeon heart mitochondria, FEBS Lett. 18:261–264.

    Article  CAS  PubMed  Google Scholar 

  • Loschen, G., Azzi, A., and FlohĂ©, L., 1973, Mitochondrial H2O2 formation: Relationship with energy conservation, FEBS Lett. 33:84–88.

    Article  CAS  PubMed  Google Scholar 

  • Löw, P., Andersson, M., Edlund, C., and Dallner, G., 1992, Effects of mevinolintreatment on tissue dolichol and ubiquinone levels in the rat, Biochim. Biophys. Acta 1128:253–259.

    Google Scholar 

  • Luft, R., Ikkos, D., Palmieri, G., Ernster, L., and Afzelius, B., 1962, A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: A correlated clinicalz, biochemical and morphological study, J. Clin. Invest. 41:1776–1804.

    CAS  PubMed  Google Scholar 

  • Maguire, J. J., Wilson, D. S., and Packer, L., 1989, Mitochondrial electron transport-linked tocopheroxyl radical reduction, J. Biol. Chem. 264:21462–21465.

    CAS  PubMed  Google Scholar 

  • Maguire, J. J., Kagan, V., Ackrell, B. A., Serbinova, E., and Packer, L., 1992, Succinate-ubiquinone reductase linked recycling of alpha-tocopherol in reconstituted systems and mitochondria: Requirement for reduced ubiquinone, Arch. Biochem. Biophys. 292:47–53.

    Article  CAS  PubMed  Google Scholar 

  • Maillard, B., Ingold, K. U., and Scaniano, J. C., 1983, Rate constants for the reactions of free radicals with oxygen in solution, J. Am. Chem. Soc. 105:5095–5099.

    Article  CAS  Google Scholar 

  • Mancini, A., De Marinis, L., Calabro, F, Sciuto, R., Oradei, A., Lippa, S., Sandric, S., Littarru, G. P., and Barbarino, A., 1989, Evaluation of metabolic status in amiodarone-induced thyroid disorders: Plasma coenzyme Q10 determination, J. Endocrinol. Invest. 12:511–516.

    CAS  PubMed  Google Scholar 

  • Matsura, T., Yamada, K., and Kawasaki, T., 1991, Changes in the content and intracellular distribution of coenzyme Q homologs inrabbit liver during growth, Biochem. Biophys. Acta 1083:2–22.

    Google Scholar 

  • Mitchell, P., 1975, Protonmotive redoxmechanism of the cytochrome bc1 complex in the respiratory chain: Protonmotive ubiquinone cycle, FEBS Lett. 56:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, P., 1976, Possible molecular mechanisms of the protonmotivefunction of cytochromesystems, J. Theor. Biol. 62:327–367.

    Article  CAS  PubMed  Google Scholar 

  • Mohr, D., Bowry, V. W., and Stocker, R., 1992, Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation, Biochim. Biophys. Acta 1126:247–254.

    CAS  PubMed  Google Scholar 

  • Morimoto, H., Imada, I., and Goto, G., 1969, Ubiquinone and related compounds. XV. Photochemical reaction of ubiquinone-7, Liebigs Ann. Chem. 729:184–192.

    CAS  Google Scholar 

  • Morimoto, H., Imada, I., and Goto, G., 1970, Ubiquinone and related compounds. XVI. Photo-oxidation of ubiquinone-7, Liebigs Ann. Chem. 735:65–71.

    CAS  Google Scholar 

  • Mortensen, S.A., 1993, Perspectives on therapy of cardiovascular diseases with coenzyme Q10 (ubiquinone), Clin. Invest. 71:S116–SI23.

    Article  CAS  Google Scholar 

  • Mukai, K., Kikuchi, S., and Urano, S., 1990, Stopped-flow kinetic study of the regeneration reaction of tocopheroxyl radical by reduced ubiquinone-10 in solution, Biochim. Biophys. Acta 1035:77–82.

    CAS  PubMed  Google Scholar 

  • Mukai, K., Itoh, S., and Morimoto, H., 1992, Stopped-flow kinetic study of vitamin E regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin K, and tocopherolquinone) in solution, J. Biol. Chem. 267:22277–22281.

    CAS  PubMed  Google Scholar 

  • Murphy, M. P., Krueger, M. J., Sablin, S. O., Ramsay, R. R., and Singer, T. P., 1995, Inhibition of complex I by hydrophobic analogues of N-methyl-4-phenylpyridinium (MPP+) and the use of an ion-selective electrode to measuretheir accumulation bymitochondria and electron-transport particles, Biochem. J. 306:359–365.

    CAS  PubMed  Google Scholar 

  • Muscari, C., Biagetti, L., Stefanelli, C., Giordano, E., Guarnieri, C., and Caldarera, C. M., 1995, Adaptive changes in coenzyme Q biosynthesis to myocardial reperfusion in young and agedrats, J. Mol. Cell Cardiol. 27:283–289.

    CAS  PubMed  Google Scholar 

  • Nohl, H., and Jordan, W., 1986, The mitochondrial site of superoxide production, Biochem. Biophys. Res. Commun. 138:533–539.

    Article  CAS  PubMed  Google Scholar 

  • Norling, B., Glazek, E., Nelson, B.D., and Ernster, L.,1974, Studies with ubiquinone-depleted submitochondrial particles. Quantitative incorporation of small amounts of ubiquinone and its effects on the NADH and succinate oxidase activities, Eur. J. Biochem. 47:475–482.

    Google Scholar 

  • Ogasahara, S., Nishikawa, Y., Yorifuji, S., Soga, F., Nakamura, Y., Takahashi, M., Hashimoto, S., Kono, N., and Tarui, S., 1986, Treatment of Kearns-Sayre syndrome with coenzyme Q10, Neurology 36:45–53.

    CAS  PubMed  Google Scholar 

  • Ohnishi, T., and Trumpower, B. L., 1980, Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate-cytochrome c reductase complex, J. Biol. Chem. 255:3278–3284.

    CAS  PubMed  Google Scholar 

  • Olson, R. E., and Rudney, H., 1983, Biosynthesis of ubiquinone, Vitam. Horm. 40:1–43.

    CAS  PubMed  Google Scholar 

  • Olsson, J. M., Eriksson, L. C., and Dallner, G., 1991, Lipid compositions of intracellular membranes isolated from ratliver nodules in Wistar rats, Cancer Res. 51:3774–3780.

    CAS  PubMed  Google Scholar 

  • Pahl, H. L., and Baeuerle, P. A., 1994, Oxygen and the control of gene expression, BioEssays 16:497–502.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, S., Tata, J. R., and Ernster, L., 1963, Ubiquinone (coenzyme Q) and the regulation of basal metabolic rate by thyroid hormones, Biochim. Biophys. Acta 69:407–409.

    Article  CAS  PubMed  Google Scholar 

  • Ramsay, R. R., and Singer, T. P., 1992, Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+, Biochem. Biophys. Res. Commun. 189:47–52.

    Article  CAS  PubMed  Google Scholar 

  • Rich, P. R., Jeal, A. E., Madgwick, S. A., and Moody, A. J., 1990, Inhibitor effects on redox-linked protonations of the b haems of themitochondrial bc1 complex, Biochim.Biophys. Acta 1018:29–40.

    CAS  PubMed  Google Scholar 

  • Salerno, J. C., and Ohnishi, T., 1980, Studies on the stabilized ubisemiquinone species in the succinatecytochrome c reductase segment of the intact mitochondrial membrane system, Biochem. J. 192:769–781.

    CAS  PubMed  Google Scholar 

  • Salerno, J. C., Osgood, M., Liu, Y. J., Taylor, H., and Scholes, C. P., 1990, Electron nuclear double resonance (ENDOR) of the Qc• ubisemiquinone radical in the mitochondrial electron transport chain, Biochemistry 29:6987–6993.

    Article  CAS  PubMed  Google Scholar 

  • Sastry, P. S., 1961, Distribution of coenzyme Q in rat liver cell fractions, Nature 189:577.

    CAS  Google Scholar 

  • Sen, C. K., and Packer, L., 1996, Antioxidant and redox regulation of gene transcription, FASEB J. 10:709–720.

    CAS  PubMed  Google Scholar 

  • Shigenaga, M. K., Hagen, T., and Ames, B. N., 1994, Oxidative damage and mitochondrial decay in aging, Proc. Natl. Acad. Sci. USA 91:10771–10778.

    CAS  PubMed  Google Scholar 

  • Söderberg, M., Edlund, C., Kristensson, K., and Dallner, G., 1990, Lipid compositions of different regions of the human brain during aging, J. Neurochem. 54:415–423.

    PubMed  Google Scholar 

  • Sottocasa, G., Kuylenstierna, B., Ernster, L., and Bergstrand, A., 1967, An electron-transport system associated with the outer mitochondrial membrane of liver mitochondria: A biochemical and morphological study, J. Cell Biol. 32:415–438.

    Article  CAS  PubMed  Google Scholar 

  • Stadtman, E. R., 1993, Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions, Annu. Rev. Biochem. 62:797–821.

    Article  CAS  PubMed  Google Scholar 

  • Sterling, K., 1986, Direct thyroid hormone activation of mitochondria: The role of adenine nucleotide translocase, Endocrinology 119:292–295.

    CAS  PubMed  Google Scholar 

  • Sterling, K., Milch, P. O., Brenner, M. A., and Lazarus, J. H., 1977, Thyroid hormone action: The mitochondrial pathway, Science 197:996–999.

    CAS  PubMed  Google Scholar 

  • Stocker, R., and Suarna, C., 1993, Extracellular reduction of ubiquinone-1and-10 by human HepG2 and blood cells, Biochim.Biophys. Acta 1158:15–22.

    CAS  PubMed  Google Scholar 

  • Stocker, R., Bowry, V. W., and Frei, B., 1991, Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidationthan does alpha-tocopherol, Proc.Natl. Acad. Sci.USA 88:1646–1650.

    CAS  PubMed  Google Scholar 

  • Sun, I. L., Sun, E. E., and Crane, F. L., 1992, Stimulation of serum-free cell proliferation by coenzyme Q, Biochem. Biophys. Res. Commun. 189:8–13.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, T., Yamaguchi, T., Shitashige, M., Okamoto, T., and Kishi, T., 1995, Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation, Biochem. J. 309:883–890.

    CAS  PubMed  Google Scholar 

  • Takayanagi, R., Takeshige, K., and Minakami, S., 1980, NADH-and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol, Biochem. J. 192:853–860.

    CAS  PubMed  Google Scholar 

  • Takeshige, K., and Minakami, S., 1975, Reduced nicotinamide adenine dinucleotide phosphate-dependent lipid peroxidation by beef heart submitochondrial particles, J. Biochem. 77:1067–1073.

    CAS  PubMed  Google Scholar 

  • Takeshige, K., and Minakami, S., 1979, NADH-and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation, Biochem. J. 180:129–135.

    CAS  PubMed  Google Scholar 

  • Takeshige, K., Takayanagi, K., and Minakami, S., 1980, Reduced coenzyme Q10 as an antioxidant of lipid peroxidation in bovine heart mitochondria, in Biomedical and Clinical Aspects of Coenzyme Q, Vol. 2 (Y. Yamamura, K. Folkers, and T. Ito, eds.), pp.15–25, Elsevier, Amsterdam.

    Google Scholar 

  • Thelin, A., Peterson, E., Hutson, J. L., McCarthy, A. D., Ericsson, J., and Dallner, G., 1994, Effect of squalestatin 1 on the biosynthesis of the mevalonate pathway lipids, Biochim. Biophys. Acta 1215:245–249.

    PubMed  Google Scholar 

  • Trumpower, B. L., 1990, The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex, J. Biol. Chem. 265:11409–11412.

    CAS  PubMed  Google Scholar 

  • Turrens, J. F., Alexandre, A., and Lehninger, A. L., 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys. 237:408–414.

    Article  CAS  PubMed  Google Scholar 

  • von Jagow, G., Ljungdahl, P. O., Ohnishi, T., and Trumpower, B. L., 1984, An inhibitor of mitochondrial respiration which binds tothecytochromeb and displaces quinone from theiron-sulfur proteinof the cytochrome bc1 complex, J. Biol Chem. 259:6318–6326.

    Google Scholar 

  • Watts, G. F., Castelluccio, C., Rice-Evans, C. A., Taub, N. A., Baum, H., and Quinn, P. J., 1993, Plasma coenzyme Q (ubiquinone) concentrations in patients treated with simvastatin, J. Clin. Pathol. 46:1055–1057.

    CAS  PubMed  Google Scholar 

  • Whitaker, S. J., Powell, S. N., and McMillan, T. J., 1991, Molecular assays of radiation-induced DNA damage, Eur. J. Cancer 27:922–92.

    CAS  PubMed  Google Scholar 

  • Willis, R. A., Folkers, K., Tucker, J. L., Ye, C. Q., Xia, L. J., and Tamagawa, H., 1990, Lovastatin decreases coenzyme Q levels in rats, Proc. Natl. Acad. Sci.USA 87:8928–8930.

    CAS  PubMed  Google Scholar 

  • Wolf, D. E., Hoffman, C. H., Trenner, N. R., Arison, B. H., Shunk, C. H., Linn, B. O., McPherson, J. F., and Folkers, K., 1958, Coenzyme Q. Structure studies on the coenzyme Q group, J. Am. Chem. Soc. 80:4752.

    CAS  Google Scholar 

  • Wolff, S. P., Garner, A., and Dean, R. T, 1986, Free radicals, lipids, and protein degradation, Trends Biochem. Sci. 11:27–31.

    Article  CAS  Google Scholar 

  • Yamamoto, M., Sato, T., Anno, M., Ujike, H., and Takemoto, M., 1987, Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes with recurrent abdominal symptoms and coenzyme Q10 administration, J. Neurol. Neurosurg. Psychiatry 50:1475–1481.

    CAS  PubMed  Google Scholar 

  • Yamamoto, Y., Kawamura, M., Tatsuno, K., Yamashita, S., Niki, E., and Naito, C., 1991, Formationof lipid hydroperoxides in the cupric ion-induced oxidation of plasma and low density lipoprotein, in Oxidative Damage and Repair: Chemical, Biological, and Medical Aspects (K. J. A. Davies, ed.), pp. 287–291, Pergamon Press, New York.

    Google Scholar 

  • Yu, C. A., and Yu, L., 1981, Ubiquinone-binding proteins, Biochim. Biophys. Acta 639:99–128.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L., and Davies, K. J. A., 1990, The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. Biol. Chem. 265:16330–16336.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Aberg, F., Appelkvist, E.-L., Dallner, G., and Ernster, L., 1995, Uptakeof dietary coenzyme Q supplement is limited in rats, J. Nutr. 125:446–453.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Turunen, M., and Appelkvist, E.-L., 1996, Restricted uptake of dietary coenzyme Q is in contrast to the unrestricted uptake ofα-tocopherolinto rat organs and cells, J. Nutr. 126:2089–2097.

    CAS  PubMed  Google Scholar 

  • Zwizinski, C. W., and Schmid, H. H. O., 1992, Peroxidative damage to cardiac mitochondria: Identification and purification of modified adenine nucleotide translocase, Arch. Biochem. Biophys. 294:178–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Andrée, P., Dallner, G., Ernster, L. (2002). Ubiquinol an Endogenous Lipid-Soluble Antioxidant in Animal Tissues. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics