Skip to main content
Log in

Sintering mechanisms and mechanical properties of joints bonded using silver nanoparticles for electronic packaging applications

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The low-temperature bonding process using metal nanoparticles has attracted considerable attention due to its potential applications including electronic packaging. However, the fundamental understanding of this advanced bonding technology is still limited. In this study, Ag nanoparticle paste used as a bonding material is prepared by the chemical reduction method. The sintering behaviors of Ag nanoparticles during the bonding process were investigated using the classical sphere-to-sphere approach. At low sintering temperatures (160–250 °C), the calculated mechanism-characteristic exponent n is 7.9, which indicates that surface diffusion is the dominant diffusion mechanism. With the increase of temperatures (300–350 °C), mechanism-characteristic exponent n changes to 3.75. This indicates that volume diffusion is probably the prevailing diffusion mechanism at this stage. Based on the classical sphere-to-sphere model, the relationship between the joint strength evolution and neck growth of Ag particles is revealed. It is found that the joint strength is proportional to square of neck size ratio (x/r)2 of sintered Ag particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De M, Ghosh PS, Rotello VM (2008) Adv Mater 20:4225

    Article  Google Scholar 

  2. Sun Y, Xia Y (2002) Science 298:2176

    Article  Google Scholar 

  3. Zhang XY, Hu A, Zhang T, Lei W, Xue XJ, Zhou Y, Duley WW (2011) ACS Nano 5:9082

    Article  Google Scholar 

  4. Lu Y, Liu GL, Lee LP (2004) Nano Lett 5:5

    Article  Google Scholar 

  5. Jiang H, Moon K, Li Y, Wong CP (2006) Chem Mater 18:2969

    Article  Google Scholar 

  6. Zhang R, Lin W, Moon K-s, Wong CP (2010) ACS Appl Mater Inter 2:2637

    Article  Google Scholar 

  7. Goldstein AN, Echer CM, Alivisatos AP (1992) Science 256:1425

    Article  Google Scholar 

  8. Allen GL, Bayles RA, Gile WW, Jesser WA (1986) Thin Solid Films 144:297

    Article  Google Scholar 

  9. Jiang Q, Zhang SH, Li JC (2004) Solid State Commun 130:581

    Article  Google Scholar 

  10. Buffat P, Borel JP (1976) Phys Rev A 13:2287

    Article  Google Scholar 

  11. Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Phys Rev B 62:10548

    Article  Google Scholar 

  12. Moon KS, Dong H, Maric R, Pothukuchi S, Hunt A, Li Y, Wong CP (2005) J Electron Mater 34:168

    Article  Google Scholar 

  13. Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Nat Nanotechnol 5:218

    Article  Google Scholar 

  14. Cui Q, Gao F, Mukherjee S, Gu Z (2009) Small 5:1246

    Article  Google Scholar 

  15. Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ, Poulikakos D (2007) Nanotechnology 18:345202

    Article  Google Scholar 

  16. Hu A, Guo JY, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu CX (2010) Appl Phys Lett 97:153117

    Article  Google Scholar 

  17. Ide E, Angata S, Hirose A, Kobayashi KF (2005) Acta Mater 53:2385

    Article  Google Scholar 

  18. Bai JG, Zhang ZZ, Calata JN, Lu GQ (2006) IEEE Trans Compon Pack Technol 29:589

    Article  Google Scholar 

  19. Yan J, Zou G, Wu A, Ren J, Hu A, Zhou Y (2012) Scripta Mater 66:582

    Article  Google Scholar 

  20. Alarifi H, Hu A, Yavuz M, Zhou Y (2011) J Electron Mater 40:1394

    Article  Google Scholar 

  21. Peng P, Hu A, Zhao B, Gerlich AP, Zhou Y (2012) J Mater Sci 47:6801

    Article  Google Scholar 

  22. Yan J, Zou G, Wu A, Ren J, Hu A, Zhou Y (2012) J Electron Mater 41:1924

    Article  Google Scholar 

  23. Yan J, Zou G, Hu A, Zhou YN (2011) J Mater Chem 21:15981

    Article  Google Scholar 

  24. Bakhishev T, Subramanian V (2009) J Electron Mater 38:2720

    Article  Google Scholar 

  25. Johnson RW, Evans JL, Jacobsen P, Thompson JR, Christopher M (2004) IEEE Trans Electron Packag Manuf 27:164

    Article  Google Scholar 

  26. Morita T, Ide E, Yasuda Y, Hirose A, Kobayashi K (2008) Jpn J Appl Phys 47:6615

    Article  Google Scholar 

  27. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mater Chem Phys 94:449

    Article  Google Scholar 

  28. Kang SJL (2005) Sintering: densification, grain growth and microstructure. Elsevier, Amsterdam

    Google Scholar 

  29. Coble RL (1961) J Appl Phys 32:787

    Article  Google Scholar 

  30. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  31. Frenkel J (1945) J Phys 9:385

    Google Scholar 

  32. Shaler AJ, Wulff J (1948) Ind Eng Chem 40:838

    Article  Google Scholar 

  33. Kuczynski GC (1949) J Metals Trans AIME 185:169

    Google Scholar 

  34. Rockland JGR (1967) Acta Mater 15:277

    Article  Google Scholar 

  35. Zhang Z, Zhao B, Hu L (1996) J Solid State Chem 121:105

    Article  Google Scholar 

  36. Nyce AC, Shafer WM (1972) Int J Powder Metall 8:171

    Google Scholar 

  37. German RM (2001) Mater Trans 42:1400

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 51375261 and 51075232), by the State Key Laboratory of Automotive Safety and Energy, Tsinghua University (Grant No. 2013XC-B-02), by the Natural Science Foundation of Beijing (Grant No. 3132020), by the Specialized Research Fund for Doctoral Program of Higher Education (Grant No. 20130002110009), by the State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (Grant No. AWPTZ12-04), and by the Tsinghua University Initiative Scientific Research Program (Grant No. 2010THZ 02–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Yan.

Additional information

Doc. IIW-2528, recommended for publication by Commission XVII “Brazing, Soldering, and Diffusion Bonding.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zou, G., Liu, L. et al. Sintering mechanisms and mechanical properties of joints bonded using silver nanoparticles for electronic packaging applications. Weld World 59, 427–432 (2015). https://doi.org/10.1007/s40194-014-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-014-0216-x

Keywords

Navigation