Skip to main content

Advertisement

Log in

Intrauterine Programming of Diabetes and Adiposity

  • Metabolism (P Trayhurn, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

The prevalence of diabetes and adiposity has increased at an alarming rate and together they contribute to the rise in morbidity and mortality worldwide. Genetic studies till date have succeeded in explaining only a proportion of heritability, while a major component remains unexplained. Early life determinants of future risk of these diseases are likely contributors to the missing heritability and thus have a significant potential in disease prevention. Epidemiological and animal studies show the importance of intrauterine and early postnatal environment in programming of the fetus to adverse metabolic outcomes and support the notion of Developmental Origins of Health and Disease (DOHaD). Emerging evidence highlights the role of epigenetic mechanisms in mediating effects of environmental exposures, which in certain instances may exhibit intergenerational transmission even in the absence of exposure. In this article, we will discuss the complexity of diabetes and increased adiposity and mechanisms of programming of these adverse metabolic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thomas CC, Philipson LH. Update on diabetes classification. Med Clin North Am. 2015;99(1):1–16.

    Article  PubMed  Google Scholar 

  2. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Supplement 1):S62–9.

    Article  PubMed Central  Google Scholar 

  4. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement 1):S81–90.

    Article  Google Scholar 

  5. Bays HE, Toth PP, Kris-Etherton PM, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(4):304–83.

    Article  PubMed  Google Scholar 

  6. Zimmet P, Magliano D, Matsuzawa Y, et al. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb. 2005;12(6):295–300.

    Article  CAS  PubMed  Google Scholar 

  7. Cornier M-A, Després J-P, Davis N, et al. Assessing adiposity a scientific statement from the American Heart Association. Circulation. 2011;124(18):1996–2019.

    Article  PubMed  Google Scholar 

  8. Wells JC. The evolution of human adiposity and obesity: where did it all go wrong? Dis Model Mech. 2012;5(5):595–607.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Farag YM, Gaballa MR. Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant. 2011;26(1):28–35.

    Article  PubMed  Google Scholar 

  11. Mohan V, Deepa R. Obesity and abdominal obesity in Asian Indians. Indian J Med Res. 2006;123(5):593–6.

    CAS  PubMed  Google Scholar 

  12. Barnett A, Eff C, Leslie RD, et al. Diabetes in identical twins. Diabetologia. 1981;20(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  13. Kobberling J, Tillil H. Empirical risk figures for first degree relatives of non-insulin dependent diabetics. Genet Diabetes mellitus. 1982;201–209.

  14. Sun X, Yu W, Hu C. Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. Bio Med Res Int. 2014. doi:10.1155/2014/926713.

    Google Scholar 

  15. Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bonnefond AL, Froguel P. Cell Metab. 2015;21(3):357–68. This paper provides a review of evolution of the field of type 2 diabetes genetics and proposes potential areas that could be integrated with genetic studies to translate into personalized medicine.

    Article  CAS  PubMed  Google Scholar 

  17. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lu Y, Loos R. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med. 2013;5(6):55–69. This paper makes an attempt to assess similarities and differences in genetic susceptibility to obesity across different populations.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yajnik CS, Janipalli CS, Bhaskar S, et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia. 2009;52(2):247–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lyssenko V, Laakso M. Genetic screening for the risk of type 2 diabetes: worthless or valuable? Diabetes Care. 2013;36 Suppl 2:S120–126.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics. 2011;187(2):367–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sanghera DK, Blackett PR. Type 2 diabetes genetics: beyond GWAS. J Diabetes Metab. 2012;3(198):6948–71.

    PubMed Central  PubMed  Google Scholar 

  24. Kilpeläinen TO, Qi L, Brage S, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8(11):e1001116.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Waki H, Yamauchi T, Kadowaki T. The epigenome and its role in diabetes. Curr Diab Rep. 2012;12(6):673–85.

    Article  CAS  PubMed  Google Scholar 

  26. Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58(12):2718–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Wendorf M, Goldfine ID. Archaeology of NIDDM: excavation of the “thrifty” genotype. Diabetes. 1991;40(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  29. Speakman JR. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the ‘drifty gene’ hypothesis. Int J Obes. 2008;32(11):1611–7.

    Article  CAS  Google Scholar 

  30. Chakravarthy MV, Booth FW. Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol. 2004;96(1):3–10.

    Article  PubMed  Google Scholar 

  31. Southam L, Soranzo N, Montgomery S, et al. Is the thrifty genotype hypothesis supported by evidence based on confirmed type 2 diabetes- and obesity-susceptibility variants? Diabetologia. 2009;52(9):1846–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ayub Q, Moutsianas L, Chen Y, et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am J Hum Genet. 2014;94(2):176–85. This paper investigates positive selection of type 2 diabetes risk loci to explain the 'thrifty genotype' hypothesis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60(1):5–20.

    Article  CAS  PubMed  Google Scholar 

  34. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601.

    Article  CAS  PubMed  Google Scholar 

  35. Rich-Edwards JW, Stampfer MJ, Manson JE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ. 1997;315(7105):396–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Reynolds RM, Walker BR, Syddall HE, et al. Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab. 2001;86(1):245–50.

    CAS  PubMed  Google Scholar 

  37. Leeson C, Kattenhorn M, Morley R, et al. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation. 2001;103(9):1264–8.

    Article  CAS  PubMed  Google Scholar 

  38. Whincup PH, Kaye SJ, Owen CG, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300(24):2886–97.

    Article  CAS  PubMed  Google Scholar 

  39. Harder T, Rodekamp E, Schellong K, et al. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165(8):849–57.

    Article  PubMed  Google Scholar 

  40. Yajnik CS, Chandak GR, Joglekar C, et al. Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis. Int J Epidemiol. 2014;43(5):1487–97. This paper provides compelling evidence for a causal role of maternal one-carbon metabolism in fetal growth by Mendelian randomization using MTHFR gene variant as the instrument.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Barker DJ, Eriksson JG, Forsen T, et al. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yajnik CS, Deshmukh US. Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev Endocr Metab Disord. 2008;9(3):203–11.

    Article  CAS  PubMed  Google Scholar 

  43. Uauy R, Kain J, Corvalan C. How can the Developmental Origins of Health and Disease (DOHaD) hypothesis contribute to improving health in developing countries? Am J Clin Nutr. 2011;94(6 Suppl):1759S–64S.

    Article  CAS  PubMed  Google Scholar 

  44. Stein Z, Susser M, Saenger G, et al. Famine and human development: The Dutch hunger winter of 1944-1945. Ann Intern Med. 1975;83(2):290.

    Google Scholar 

  45. Schulz LC. The Dutch Hunger Winter and the developmental origins of health and disease. Proc Natl Acad Sci U S A. 2010;107(39):16757–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Barker DJ. Intrauterine programming of adult disease. Mol Med Today. 1995;1(9):418–23.

    Article  CAS  PubMed  Google Scholar 

  47. Wilcox AJ. On the importance—and the unimportance—of birthweight. Int J Epidemiol. 2001;30(6):1233–41.

    Article  CAS  PubMed  Google Scholar 

  48. Painter RC, de Rooij SR, Bossuyt PM, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2006;84(2):322–7.

    CAS  PubMed  Google Scholar 

  49. Ravelli G-P, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349–53.

    Article  CAS  PubMed  Google Scholar 

  50. Painter RC, de Rooij SR, Bossuyt PM, et al. Blood pressure response to psychological stressors in adults after prenatal exposure to the Dutch famine. J Hypertens. 2006;24(9):1771–8.

    Article  CAS  PubMed  Google Scholar 

  51. Painter RC, Roseboom TJ, Van Montfrans GA, et al. Microalbuminuria in adults after prenatal exposure to the Dutch famine. J Am Soc Nephrol. 2005;16(1):189–94.

    Article  PubMed  Google Scholar 

  52. De Rooij SR, Painter RC, Phillips DI, et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care. 2006;29(8):1897–901.

    Article  PubMed  Google Scholar 

  53. Ravelli AC, van der Meulen JH, Michels R, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351(9097):173–7.

    Article  CAS  PubMed  Google Scholar 

  54. Petrik J, Reusens B, Arany E, et al. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II 1. Endocrinology. 1999;140(10):4861–73.

    CAS  PubMed  Google Scholar 

  55. Maloney CA, Gosby AK, Phuyal JL, et al. Site‐specific changes in the expression of fat‐partitioning genes in weanling rats exposed to a low‐protein diet in utero. Obes Res. 2003;11(3):461–8.

    Article  CAS  PubMed  Google Scholar 

  56. Guan H, Arany E, van Beek JP, et al. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab. 2005;288(4):E663–73.

    Article  CAS  PubMed  Google Scholar 

  57. Bellinger L, Lilley C, Langley-Evans SC. Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br J Nutr. 2004;92(3):513–20.

    Article  CAS  PubMed  Google Scholar 

  58. Cetin I, Berti C, Calabrese S. Role of micronutrients in the periconceptional period. Hum Reprod Update. 2010;16(1):80–95.

    Article  CAS  PubMed  Google Scholar 

  59. Moore SE, Cole TJ, Poskitt EM, et al. Season of birth predicts mortality in rural Gambia. Nature. 1997;388(6641):434.

    Article  CAS  PubMed  Google Scholar 

  60. Yajnik C, Deshpande SS, Lubree HG, et al. Vitamin B12 deficiency and hyperhomocysteinemia in rural and urban Indians. J Assoc Physicians India. 2006;54:775–82.

    CAS  PubMed  Google Scholar 

  61. Krishnaveni G, Hill J, Veena S, et al. Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia. 2009;52(11):2350–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Godbole K, Deshmukh U, Yajnik C. Nutri-genetic determinants of neural tube defects in India. Indian Pediatr. 2009;46(6):467–75.

    PubMed  Google Scholar 

  63. Adaikalakoteswari A, Jayashri R, Sukumar N, et al. Vitamin B12 deficiency is associated with adverse lipid profile in Europeans and Indians with type 2 diabetes. Cardiovasc Diabetol. 2014;13:129–36.

    Article  PubMed Central  PubMed  Google Scholar 

  64. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350(20):2033–41.

    Article  PubMed  Google Scholar 

  65. Lehmann M, Gottfries C, Regland B, et al. Identification of cognitive impairment in the elderly: homocysteine is an early marker. Dement Geriatr Cogn Disord. 1999;10(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  66. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Rao S, Yajnik CS, Kanade A, et al. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr. 2001;131(4):1217–24.

    CAS  PubMed  Google Scholar 

  68. Modi N, Thomas EL, Uthaya SN, et al. Whole body magnetic resonance imaging of healthy newborn infants demonstrates increased central adiposity in Asian Indians. Pediatr Res. 2009;65:584–7.

    Article  PubMed  Google Scholar 

  69. Yajnik C, Deshpande S, Jackson A, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51(1):29–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Kumar KA, Lalitha A, Pavithra D, et al. Maternal dietary folate and/or vitamin B 12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring. J Nutr Biochem. 2013;24(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  71. Kumar KA, Lalitha A, Reddy U, et al. Chronic maternal vitamin B12 restriction induced changes in body composition & glucose metabolism in the Wistar rat offspring are partly correctable by rehabilitation. PLoS One. 2014;9(11):e112991. This paper confirms maternal vitamin B12 deficiency mediated fetal programmming of cardio-metabolic risk in rats that can be partially corrected by B12 rehabilitation.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Stratton RJ. Summary of a systematic review on oral nutritional supplement use in the community. Proc Nutr Soc. 2000;59(03):469–76.

    Article  CAS  PubMed  Google Scholar 

  73. Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19(1):217–46.

    Article  CAS  PubMed  Google Scholar 

  74. Khot V, Kale A, Joshi A et al. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (Folic Acid, Vitamin B 12) and Omega-3 Fatty Acids. Biomed Res Int. 2014. doi.org/10.1155/2014/613078

  75. Helland IB, Smith L, Saarem K, et al. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1):e39–44.

    Article  PubMed  Google Scholar 

  76. Ovide-Bordeaux S, Grynberg A. Docosahexaenoic acid affects insulin deficiency-and insulin resistance-induced alterations in cardiac mitochondria. Am J Physiol Regul Integr Comp Physiol. 2004;286(3):R519–27.

    Article  CAS  PubMed  Google Scholar 

  77. Bhatia HS, Agrawal R, Sharma S, et al. Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS One. 2011;6(12):e28451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kulkarni A, Dangat K, Kale A, et al. Effects of altered maternal folic acid, vitamin B(12) and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One. 2011;6(3):e17706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Patel V, Chatterji S, Chisholm D, et al. Chronic diseases and injuries in India. Lancet. 2011;377(9763):413–28.

    Article  PubMed  Google Scholar 

  80. Fall C. Maternal nutrition: effects on health in the next generation. Indian J Med Res. 2009;130(5):593–9.

    PubMed  Google Scholar 

  81. Freinkel N. Banting Lecture 1980: of pregnancy and progeny. Diabetes. 1980;29(12):1023–35.

    Article  CAS  PubMed  Google Scholar 

  82. Shoar Z, Zivot A, Nasiri S et al. SUN-0958: Maternal obesity, maternal gestational diabetes, and neonatal outcome. 2014

  83. Page KA, Romero A, Buchanan TA, et al. Gestational diabetes mellitus, maternal obesity, and adiposity in offspring. J Pediatr. 2014;164(4):807–10.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Kim SY, Sharma AJ, Sappenfield W, et al. Association of maternal body mass index, excessive weight gain, and gestational diabetes mellitus with large-for-gestational-age births. Obstet Gynecol. 2014;123(4):737–44.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Kaar JL, Crume T, Brinton JT, et al. Maternal obesity, gestational weight gain, and offspring adiposity: the exploring perinatal outcomes among children study. J Pediatr. 2014;165(3):509–15.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Catalano PM, Presley L, Minium J, et al. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care. 2009;32(6):1076–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Luo ZC, Nuyt AM, Delvin E, et al. Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity. 2013;21(1):210–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ramsay JE, Ferrell WR, Crawford L, et al. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J Clin Endocrinol Metab. 2002;87(9):4231–7.

    Article  CAS  PubMed  Google Scholar 

  89. Westermeier F, Sáez PJ, Villalobos-Labra R, et al. Programming of fetal insulin resistance in pregnancies with maternal obesity by ER stress and inflammation. Bio Med Res Int. 2014. doi:10.1155/2014/917672.

    Google Scholar 

  90. Gillman MW, Rifas-Shiman S, Berkey CS, et al. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics. 2003;111(3):e221–6.

    Article  PubMed  Google Scholar 

  91. Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–6.

    Article  PubMed  Google Scholar 

  92. Lee H, Jang HC, Park HK, et al. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. Diabetes Res Clin Pract. 2007;78(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  93. Pettitt DJ, Baird HR, Aleck KA, et al. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med. 1983;308(5):242–5.

    Article  CAS  PubMed  Google Scholar 

  94. Pettitt DJ, Knowler WC. Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care. 1998;21 Suppl 2:B138–141.

    PubMed  Google Scholar 

  95. Pettitt DJ, Nelson RG, Saad MF, et al. Diabetes and obesity in the offspring of Pima Indian Women with diabetes during pregnancy. Diabetes Care. 1993;16(1):310–4.

    Article  CAS  PubMed  Google Scholar 

  96. Vambergue A, Fajardy I. Consequences of gestational and pregestational diabetes on placental function and birth weight. World J Diabetes. 2011;2(11):196–203.

    PubMed Central  PubMed  Google Scholar 

  97. Yajnik CS. Fetal programming of diabetes: still so much to learn! Diabetes Care. 2010;33(5):1146–8.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Dabelea D. The predisposition to obesity and diabetes in offspring of diabetic mothers. Diabetes Care. 2007;30(Supplement 2):S169–74.

    Article  PubMed  Google Scholar 

  99. Kulkarni SR, Kumaran K, Rao SR, et al. Maternal lipids are as important as glucose for fetal growth findings from the Pune Maternal Nutrition Study. Diabetes Care. 2013;36(9):2706–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Luo Z, Fraser W, Julien P, et al. Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses. 2006;66(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  101. Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44(4):275–95.

    Article  CAS  PubMed  Google Scholar 

  102. Brenseke B, Prater MR, Bahamonde J, et al. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy. 2013. doi:10.1155/2013/368461.

    PubMed Central  PubMed  Google Scholar 

  103. Ramamoorthy TG, Begum G, Harno E et al. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control. Front Neurosci. 2015;9. doi.org/10.3389/fnins.2015.00126.

  104. Jia Y, Li R, Cong R, et al. Maternal low-protein diet affects epigenetic regulation of hepatic mitochondrial DNA transcription in a sex-specific manner in newborn piglets associated with GR binding to its promoter. PLoS One. 2013;8(5):e63855.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Sinclair KD, Allegrucci C, Singh R, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci. 2007;104(49):19351–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Tobi EW, Lumey L, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing-and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Waterland RA, Kellermayer R, Laritsky E, et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 2010;12:e1001252.

    Article  CAS  Google Scholar 

  109. Dominguez-Salas P, Moore SE, Baker MS et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5.doi:10.1038/ncomms4746. This paper provides evidence for persistent effect of periconceptional maternal methyl-donor nutrient intake on offspring epigenotype at metastable epialleles.

  110. Hoile SP, Irvine NA, Kelsall CJ, et al. Maternal fat intake in rats alters 20: 4n-6 and 22: 6n-3 status and the epigenetic regulation of Fads2 in offspring liver. J Nutr Biochem. 2013;24(7):1213–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Vucetic Z, Kimmel J, Totoki K, et al. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinol. 2010;151(10):4756–64.

    Article  CAS  Google Scholar 

  112. Zhang J, Zhang F, Didelot X, et al. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics. 2009;10(1):478–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Bouchard L, Thibault S, Guay S-P, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33(11):2436–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Houde A-A, Hivert M-F, Bouchard L. Fetal epigenetic programming of adipokines. Adipocytes. 2013;2(1):41–6.

    Article  Google Scholar 

  115. Bouchard L, Hivert M-F, Guay S-P, et al. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes. 2012;61(5):1272–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. El Hajj N, Pliushch G, Schneider E, et al. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes. 2013;62(4):1320–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Stoger R. The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays. 2008;30(2):156–66.

    Article  PubMed  Google Scholar 

  118. Yajnik CS. Nutrient-mediated teratogenesis and fuel-mediated teratogenesis: two pathways of intrauterine programming of diabetes. Int J Gynaecol Obstet. 2009;104:S27–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Council for Scientific and Industrial Research (CSIR), Ministry of Science and Technology, Government of India, India for support (BSC0118).

Compliance with Ethics Guidelines

Conflict of Interest

Ashutosh Singh Tomar, Divya Sri Priyanka Tallapragada, Suraj Singh Nongmaithem, Smeeta Shrestha, Chittaranjan S Yajnik, and Giriraj Ratan Chandak declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giriraj Ratan Chandak.

Additional information

This article is part of the Topical Collection on Metabolism

Ashutosh Singh Tomar and Divya Sri Priyanka Tallapragada contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, A.S., Tallapragada, D.S.P., Nongmaithem, S.S. et al. Intrauterine Programming of Diabetes and Adiposity. Curr Obes Rep 4, 418–428 (2015). https://doi.org/10.1007/s13679-015-0175-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-015-0175-6

Keywords

Navigation