Skip to main content

Advertisement

Log in

Immunological Aspects in Amyotrophic Lateral Sclerosis

Translational Stroke Research Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron death, leading to muscle atrophy, paralysis, and death usually within 3 to 5 years after diagnosis. Most cases are sporadic, with still undefined etiopathogenesis. Both the innate and adaptive immune systems are involved in ALS, with special participation of T lymphocytes and microglia. Inflammation plays a dual role in the disease, protective and T regulatory cell rich in the early stages and deleterious as disease progresses. Attempts to modulate immune/inflammatory system response are reported in the literature, and while beneficial effects are achieved in ALS animal models, results of most clinical trials have been disappointing. The impaired blood–brain barrier is an important feature in the pathogenesis of ALS and likely affects the immune system response. The present review describes the role of the immune system in ALS pathogenesis and the tight coupling of immunity and central nervous system barrier function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhinav K, Stanton B, Johnston C, Hardstaff J, Orrell RW, et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology. 2007;29:44–8.

    Article  PubMed  CAS  Google Scholar 

  2. Beghi E, Millul A, Micheli A, Vitelli E, Logroscino G. Incidence of ALS in Lombardy, Italy. Neurology. 2007;68:141–5.

    Article  PubMed  CAS  Google Scholar 

  3. Chiò A, Mora G, Calvo A, Mazzini L, Bottacchi E, et al. Epidemiology of ALS in Italy: a 10-year prospective population-based study. Neurology. 2009;72:725–31.

    Article  PubMed  Google Scholar 

  4. McGuire V, Longstreth Jr WT, Koepsell TD, van Belle G. Incidence of amyotrophic lateral sclerosis in three counties in western Washington state. Neurology. 1996;47:571–3.

    Article  PubMed  CAS  Google Scholar 

  5. Vázquez MC, Ketzoián C, Legnani C, Rega I, Sánchez N, et al. Incidence and prevalence of amyotrophic lateral sclerosis in Uruguay: a population-based study. Neuroepidemiology. 2008;30:105–11.

    Article  PubMed  Google Scholar 

  6. McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med. 2010;7:557–70.

    Article  PubMed  Google Scholar 

  7. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.

    Article  PubMed  CAS  Google Scholar 

  8. Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 2004;27:723–49.

    Article  PubMed  CAS  Google Scholar 

  9. Consilvio C, Vincent AM, Feldman EL. Neuroinflammation, COX-2, and ALS—a dual role? Exp Neurol. 2004;187:1–10.

    Article  PubMed  CAS  Google Scholar 

  10. Deng H-X, Chen W, Hong S-T, Boycott KM, Gorrie GH, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211–5.

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet. 2007;369:2031–41.

    Article  PubMed  CAS  Google Scholar 

  12. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7:710–23.

    Article  PubMed  CAS  Google Scholar 

  13. Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65 Suppl 1:S3–9.

    Article  PubMed  CAS  Google Scholar 

  14. Saleh IA, Zesiewicz T, Xie Y, Sullivan KL, Miller AM, et al. Evaluation of humoral immune response in adaptive immunity in ALS patients during disease progression. J Neuroimmunol. 2009;215:96–101.

    Article  PubMed  CAS  Google Scholar 

  15. Strong MJ, Kesavapany S, Pant HC. The pathobiology of amyotrophic lateral sclerosis: a proteinopathy? J Neuropathol Exp Neurol. 2005;64:649–64.

    Article  PubMed  CAS  Google Scholar 

  16. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762:1068–82.

    Article  CAS  Google Scholar 

  17. Alexianu ME, Kozovska M, Appel SH. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology. 2001;57:1282–9.

    Article  PubMed  CAS  Google Scholar 

  18. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A. 2008;105:15558–63.

    Article  PubMed  CAS  Google Scholar 

  19. Engelhardt JI, Appel SH. IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Arch Neurol. 1990;47:1210–6.

    Article  PubMed  CAS  Google Scholar 

  20. Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C, et al. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol. 2009;210:73–9.

    Article  PubMed  CAS  Google Scholar 

  21. Garbuzova-Davis S, Rodrigues MCO, Hernandez-Ontiveros DG, Louis MK, Willing AE, et al. Amyotrophic lateral sclerosis: a neurovascular disease. Brain Res. 2011;1398:113–25.

    Article  PubMed  CAS  Google Scholar 

  22. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, et al. Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res. 2007;1157:126–37.

    Article  PubMed  CAS  Google Scholar 

  23. Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, et al. Evidence of compromised blood–spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One. 2007;2:e1205.

    Article  PubMed  CAS  Google Scholar 

  24. Garbuzova-Davis S, Woods RL, Louis MK, Zesiewicz TA, Kuzmin-Nichols N, et al. Reduction of circulating endothelial cells in peripheral blood of ALS patients. PLoS One. 2010;5:e10614.

    Article  PubMed  CAS  Google Scholar 

  25. Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol. 2009;4:389–98.

    Article  PubMed  Google Scholar 

  26. Milane A, Fernandez C, Dupuis L, Buyse M, Loeffler J-P, et al. P-glycoprotein expression and function are increased in an animal model of amyotrophic lateral sclerosis. Neurosci Lett. 2010;472:166–70.

    Article  PubMed  CAS  Google Scholar 

  27. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res. 2011;89:718–28.

    Article  PubMed  CAS  Google Scholar 

  28. Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, et al. Impaired blood–brain and blood–spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res. 2009;1301:152–62.

    Article  PubMed  CAS  Google Scholar 

  29. Soon CPW, Crouch PJ, Turner BJ, McLean CA, Laughton KM, et al. Serum matrix metalloproteinase-9 activity is dysregulated with disease progression in the mutant SOD1 transgenic mice. Neuromuscul Disord NMD. 2010;20:260–6.

    Article  Google Scholar 

  30. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. 2008;11:420–2.

    Article  PubMed  CAS  Google Scholar 

  31. Seksenyan A, Ron-Harel N, Azoulay D, Cahalon L, Cardon M, et al. Thymic involution, a co-morbidity factor in amyotrophic lateral sclerosis. J Cell Mol Med. 2010;14:2470–82.

    Article  PubMed  CAS  Google Scholar 

  32. Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Arch Neurol. 1993;50:30–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, et al. Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci. 2007;27:9201–19.

    Article  PubMed  CAS  Google Scholar 

  34. McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26:459–70.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis C-AB, Solomon JN, Rossi FM, Krieger C. Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1. Glia. 2009;57:1410–9.

    Article  PubMed  Google Scholar 

  36. Zhang R, Hadlock KG, Do H, Yu S, Honrada R, et al. Gene expression profiling in peripheral blood mononuclear cells from patients with sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2011;230:114–23.

    Article  PubMed  CAS  Google Scholar 

  37. McCombe PA, Henderson RD. The Role of immune and inflammatory mechanisms in ALS. Curr Mol Med. 2011;11:246–54.

    Article  PubMed  CAS  Google Scholar 

  38. Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002;40:133–9.

    Article  PubMed  Google Scholar 

  39. Weydt P, Möller T. The role of microglial cells in amyotrophic lateral sclerosis. Phys Med Rehabil Clin N Am. 2005;16:1081–90, xi.

    Article  PubMed  Google Scholar 

  40. Turner MR, Cagnin A, Turkheimer FE, Miller CCJ, Shaw CE, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15:601–9.

    Article  PubMed  CAS  Google Scholar 

  41. Wang J, Xu G, Slunt HH, Gonzales V, Coonfield M, et al. Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol Dis. 2005;20:943–52.

    Article  PubMed  CAS  Google Scholar 

  42. Barbeito AG, Mesci P, Boillée S. Motor neuron-immune interactions: the vicious circle of ALS. J Neural Transm. 2010;117:981–1000.

    Article  PubMed  CAS  Google Scholar 

  43. Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, et al. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci U S A. 2009;106:20960–5.

    Article  PubMed  CAS  Google Scholar 

  44. Solomon JN, Lewis C-AB, Ajami B, Corbel SY, Rossi FMV, et al. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia. 2006;53:744–53.

    Article  PubMed  Google Scholar 

  45. Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia. 1998;23:249–56.

    Article  PubMed  CAS  Google Scholar 

  46. Appel SH, Beers DR, Henkel JS. T cell–microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol. 2010;31:7–17.

    Article  PubMed  CAS  Google Scholar 

  47. Beers DR, Henkel JS, Zhao W, Wang J, Huang A, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain. 2011;134:1293–314.

    Article  PubMed  Google Scholar 

  48. Beers DR, Zhao W, Liao B, Kano O, Wang J, et al. Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav Immun. 2011;25:1025–35.

    Article  PubMed  CAS  Google Scholar 

  49. Tada S, Okuno T, Yasui T, Nakatsuji Y, Sugimoto T, et al. Deleterious effects of lymphocytes at the early stage of neurodegeneration in an animal model of amyotrophic lateral sclerosis. J Neuroinflammation. 2011;8:19.

    Article  PubMed  CAS  Google Scholar 

  50. Naor S, Keren Z, Bronshtein T, Goren E, Machluf M, et al. Development of ALS-like disease in SOD-1 mice deficient of B lymphocytes. J Neurol. 2009;256:1228–35.

    Article  PubMed  CAS  Google Scholar 

  51. Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A. 2008;105:17913–8.

    Article  PubMed  CAS  Google Scholar 

  52. Troost D, Van den Oord JJ, Vianney de Jong JM. Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 1990;16:401–10.

    Article  PubMed  CAS  Google Scholar 

  53. Alexianu ME, Mohamed AH, Smith RG, Colom LV, Appel SH. Apoptotic cell death of a hybrid motoneuron cell line induced by immunoglobulins from patients with amyotrophic lateral sclerosis. J Neurochem. 1994;63:2365–8.

    Article  PubMed  CAS  Google Scholar 

  54. Pullen AH, Demestre M, Howard RS, Orrell RW. Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompanied by Ca2+ enhancement. Acta Neuropathologica. 2004;107:35–46.

    Article  PubMed  CAS  Google Scholar 

  55. Engelhardt JI, Soós J, Obál I, Vigh L, Siklós L. Subcellular localization of IgG from the sera of ALS patients in the nervous system. Acta Neurologica Scandinavica. 2005;112:126–33.

    Article  PubMed  CAS  Google Scholar 

  56. Appel SH, Smith RG, Alexianu M, Siklos L, Engelhardt J, et al. Increased intracellular calcium triggered by immune mechanisms in amyotrophic lateral sclerosis. Clin Neurosci (New York, NY). 1996;3:368–74.

    CAS  Google Scholar 

  57. Appel SH, Beers D, Siklos L, Engelhardt JI, Mosier DR. Calcium: the Darth Vader of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2 Suppl 1:S47–54.

    PubMed  CAS  Google Scholar 

  58. Mohamed HA, Mosier DR, Zou LL, Siklós L, Alexianu ME, et al. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons. J Neurosci Res. 2002;69:110–6.

    Article  PubMed  CAS  Google Scholar 

  59. Fialová L, Svarcová J, Bartos A, Ridzon P, Malbohan I, et al. Cerebrospinal fluid and serum antibodies against neurofilaments in patients with amyotrophic lateral sclerosis. Eur J Neurol. 2010;17:562–6.

    Article  PubMed  Google Scholar 

  60. Greiner A, Schmausser B, Petzold K, Krüger H, Marx A. Neuronal targets of serum and cerebrospinal fluid autoantibodies in amyotrophic lateral sclerosis. Acta Neuropathol. 1996;91:67–71.

    Article  PubMed  CAS  Google Scholar 

  61. Niebroj-Dobosz I, Jamrozik Z, Janik P, Hausmanowa-Petrusewicz I, Kwieciński H. Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients. Acta Neurologica Scandinavica. 1999;100:238–43.

    Article  PubMed  CAS  Google Scholar 

  62. Niebroj-Dobosz I, Dziewulska D, Janik P. Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia Neuropathol. 2006;44:191–6.

    PubMed  CAS  Google Scholar 

  63. Sta M, Sylva-Steenland RMR, Casula M, de Jong JMBV, Troost D, et al. Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol Dis. 2011;42:211–20.

    Article  PubMed  CAS  Google Scholar 

  64. Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol. 1992;140:691–707.

    PubMed  CAS  Google Scholar 

  65. Woodruff TM, Costantini KJ, Crane JW, Atkin JD, Monk PN, et al. The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J Immunol. 2008;181:8727–34.

    PubMed  CAS  Google Scholar 

  66. Woodruff TM, Costantini KJ, Taylor SM, Noakes PG. Role of complement in motor neuron disease: animal models and therapeutic potential of complement inhibitors. Adv Exp Med Biol. 2008;632:143–58.

    PubMed  CAS  Google Scholar 

  67. Almer G, Guégan C, Teismann P, Naini A, Rosoklija G, et al. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol. 2001;49:176–85.

    Article  PubMed  CAS  Google Scholar 

  68. Almer G, Teismann P, Stevic Z, Halaschek-Wiener J, Deecke L, et al. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology. 2002;58:1277–9.

    Article  PubMed  CAS  Google Scholar 

  69. Tateishi T, Yamasaki R, Tanaka M, Matsushita T, Kikuchi H, et al. CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis. J Neuroimmunol. 2010;222:76–81.

    Article  PubMed  CAS  Google Scholar 

  70. Baron P, Bussini S, Cardin V, Corbo M, Conti G, et al. Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve. 2005;32:541–4.

    Article  PubMed  CAS  Google Scholar 

  71. Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004;55:221–35.

    Article  PubMed  CAS  Google Scholar 

  72. Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G, et al. Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol. 2003;144:139–42.

    Article  PubMed  CAS  Google Scholar 

  73. Possel H, Noack H, Putzke J, Wolf G, Sies H. Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia. 2000;32:51–9.

    Article  PubMed  CAS  Google Scholar 

  74. Zhao W, Xie W, Le W, Beers DR, He Y, et al. Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism. J Neuropathol Exp Neurol. 2004;63:964–77.

    PubMed  CAS  Google Scholar 

  75. Baron R, Nemirovsky A, Harpaz I, Cohen H, Owens T, et al. IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J. 2008;22:2843–52.

    Article  PubMed  CAS  Google Scholar 

  76. Kaul M, Lipton SA. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A. 1999;96:8212–6.

    Article  PubMed  CAS  Google Scholar 

  77. Lee J, Kim SJ, Son TG, Chan SL, Mattson MP. Interferon-gamma is up-regulated in the hippocampus in response to intermittent fasting and protects hippocampal neurons against excitotoxicity. J Neurosci Res. 2006;83:1552–7.

    Article  PubMed  CAS  Google Scholar 

  78. Henkel JS, Beers DR, Siklós L, Appel SH. The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol Cell Neurosci. 2006;31:427–37.

    Article  PubMed  CAS  Google Scholar 

  79. Kuhle J, Lindberg RLP, Regeniter A, Mehling M, Steck AJ, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16:771–4.

    Article  PubMed  CAS  Google Scholar 

  80. Bigini P, Veglianese P, Andriolo G, Cova L, Grignaschi G, et al. Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration. Rejuvenation Res. 2011;14:623–39.

    Article  PubMed  CAS  Google Scholar 

  81. Rentzos M, Rombos A, Nikolaou C, Zoga M, Zouvelou V, et al. Interleukin-15 and interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur Neurol. 2010;63:285–90.

    Article  PubMed  CAS  Google Scholar 

  82. Rentzos M, Rombos A, Nikolaou C, Zoga M, Zouvelou V, et al. Interleukin-17 and interleukin-23 are elevated in serum and cerebrospinal fluid of patients with ALS: a reflection of Th17 cells activation? Acta Neurol Scand. 2010;122:425–9.

    Article  PubMed  CAS  Google Scholar 

  83. Fiala M, Chattopadhay M, La Cava A, Tse E, Liu G, et al. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation. 2010;7:76.

    Article  PubMed  CAS  Google Scholar 

  84. Drachman DB, Chaudhry V, Cornblath D, Kuncl RW, Pestronk A, et al. Trial of immunosuppression in amyotrophic lateral sclerosis using total lymphoid irradiation. Ann Neurol. 1994;35:142–50.

    Article  PubMed  CAS  Google Scholar 

  85. Gourie-Devi M, Nalini A, Subbakrishna DK. Temporary amelioration of symptoms with intravenous cyclophosphamide in amyotrophic lateral sclerosis. J Neurol Sci. 1997;150:167–72.

    Article  PubMed  CAS  Google Scholar 

  86. Kiaei M, Kipiani K, Petri S, Choi D-K, Chen J, et al. Integrative role of cPLA with COX-2 and the effect of non-steroidal anti-inflammatory drugs in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem. 2005;93:403–11.

    Article  PubMed  CAS  Google Scholar 

  87. Kriz J, Nguyen MD, Julien J-P. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002;10:268–78.

    Article  PubMed  CAS  Google Scholar 

  88. Pompl PN, Ho L, Bianchi M, McManus T, Qin W, et al. A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. FASEB J. 2003;17:725–7.

    PubMed  CAS  Google Scholar 

  89. Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport. 2002;13:1067–70.

    Article  Google Scholar 

  90. Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, et al. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol. 2002;52:771–8.

    Article  PubMed  CAS  Google Scholar 

  91. Cudkowicz ME, Shefner JM, Schoenfeld DA, Zhang H, Andreasson KI, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol. 2006;60:22–31.

    Article  PubMed  CAS  Google Scholar 

  92. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007;6:1045–53.

    Article  PubMed  CAS  Google Scholar 

  93. Keller AF, Gravel M, Kriz J. Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp Neurol. 2011;228:69–79.

    Article  PubMed  CAS  Google Scholar 

  94. Appel SH, Stewart SS, Appel V, Harati Y, Mietlowski W, et al. A double-blind study of the effectiveness of cyclosporine in amyotrophic lateral sclerosis. Arch Neurol. 1988;45:381–6.

    Article  PubMed  CAS  Google Scholar 

  95. Karlsson J, Fong KSK, Hansson MJ, Elmér E, Csiszar K, et al. Life span extension and reduced neuronal death after weekly intraventricular cyclosporin injections in the G93A transgenic mouse model of amyotrophic lateral sclerosis. J Neurosurg. 2004;101:128–37.

    Article  PubMed  CAS  Google Scholar 

  96. Keep M, Elmér E, Fong KS, Csiszar K. Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res. 2001;894:327–31.

    Article  PubMed  CAS  Google Scholar 

  97. Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT. An ALS mouse model with a permeable blood–brain barrier benefits from systemic cyclosporine A treatment. J Neurochem. 2004;88:821–6.

    Article  PubMed  CAS  Google Scholar 

  98. Lensmeyer GL, Wiebe DA, Carlson IH, Subramanian R. Concentrations of cyclosporin A and its metabolites in human tissues postmortem. J Anal Toxicol. 1991;15:110–5.

    PubMed  CAS  Google Scholar 

  99. Pollari E, Savchenko E, Jaronen M, Kanninen K, Malm T, et al. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis. J Neuroinflammation. 2011;8:74.

    Article  PubMed  CAS  Google Scholar 

  100. Hartung T, Döcke WD, Gantner F, Krieger G, Sauer A, et al. Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood. 1995;85:2482–9.

    PubMed  CAS  Google Scholar 

  101. Anderlini P, Przepiorka D, Champlin R, Körbling M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood. 1996;88:2819–25.

    PubMed  CAS  Google Scholar 

  102. Pitzer C, Krüger C, Plaas C, Kirsch F, Dittgen T, et al. Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis. Brain. 2008;131:3335–47.

    Article  PubMed  Google Scholar 

  103. Nefussy B, Artamonov I, Deutsch V, Naparstek E, Nagler A, et al. Recombinant human granulocyte-colony stimulating factor administration for treating amyotrophic lateral sclerosis: a pilot study. Amyotroph Lateral Scler. 2010;11:187–93.

    Article  PubMed  CAS  Google Scholar 

  104. Duning T, Schiffbauer H, Warnecke T, Mohammadi S, Floel A, et al. G-CSF prevents the progression of structural disintegration of white matter tracts in amyotrophic lateral sclerosis: a pilot trial. PLoS One. 2011;6:e17770.

    Article  PubMed  CAS  Google Scholar 

  105. Chiò A, Mora G, La Bella V, Caponnetto C, Mancardi G, et al. Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis: clinical and biological results from a prospective multicenter study. Muscle Nerve. 2011;43:189–95.

    Article  PubMed  CAS  Google Scholar 

  106. Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, et al. Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain. 2004;127:2518–32.

    Article  PubMed  Google Scholar 

  107. Chen R, Ende N. The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med. 2000;31:21–30.

    PubMed  CAS  Google Scholar 

  108. Ende N, Weinstein F, Chen R, Ende M. Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sci. 2000;67:53–9.

    Article  PubMed  CAS  Google Scholar 

  109. Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12:255–70.

    Article  PubMed  CAS  Google Scholar 

  110. Garbuzova-Davis S, Sanberg CD, Kuzmin-Nichols N, Willing AE, Gemma C, et al. Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS One. 2008;3:e2494.

    Article  PubMed  CAS  Google Scholar 

  111. Appel SH, Engelhardt JI, Henkel JS, Siklos L, Beers DR, et al. Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology. 2008;71:1326–34.

    Article  PubMed  CAS  Google Scholar 

  112. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2008;31:395–405.

    Article  PubMed  CAS  Google Scholar 

  113. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol. 2010;223:229–37.

    Article  PubMed  CAS  Google Scholar 

  114. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, et al. Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci. 2008;265:78–83.

    Article  PubMed  CAS  Google Scholar 

  115. Garbuzova-Davis S, Rodrigues MCO, Mirtyl S, Turner S, Mitha S, et al. Multiple intravenous administrations of human umbilical cord blood cells benefit in a mouse model of ALS. PLoS One. 2012;7:e31254.

    Article  PubMed  CAS  Google Scholar 

  116. Humayun S, Gohar M, Volkening K, Moisse K, Leystra-Lantz C, et al. The complement factor C5a receptor is upregulated in NFL−/− mouse motor neurons. J Neuroimmunol. 2009;210:52–62.

    Article  PubMed  CAS  Google Scholar 

  117. Zipp F, Aktas O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 2006;29:518–27.

    Article  PubMed  CAS  Google Scholar 

  118. Nicaise C, Soyfoo MS, Delporte C, Pochet R. Aquaporin-4 as a potential marker of BBB disruption in ALS models. Amyotroph Lateral Scler. 2010;11:253–4.

    Article  PubMed  CAS  Google Scholar 

  119. Boston-Howes W, Williams EO, Bogush A, Scolere M, Pasinelli P, et al. Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis. Exp Neurol. 2008;213:229–37.

    Article  PubMed  CAS  Google Scholar 

  120. Takeuchi H, Mizoguchi H, Doi Y, Jin S, Noda M, et al. Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease. PLoS One. 2011;6:e21108.

    Article  PubMed  CAS  Google Scholar 

  121. Milane A, Vautier S, Chacun H, Meininger V, Bensimon G, et al. Interactions between riluzole and ABCG2/BCRP transporter. Neurosci Lett. 2009;452:12–6.

    Article  PubMed  CAS  Google Scholar 

  122. Garbuzova-Davis S (2011) Blood–brain/spinal cord barrier impairment in ALS: how to repair? Invited speech at MDA National Scientific Conference, Las Vegas, Nevada

  123. Rodrigues MCO, Borlongan CV, Suthakaran S, Hernandez-Ontiveros DG, Rattan S, et al. Basement membrane collagen accumulation in brain and spinal cord vessels of ALS patients. Cell Transplantation. 2011;20:581.

    Google Scholar 

  124. Divers TJ, Mohammed HO, Cummings JF, Valentine BA, De Lahunta A, et al. Equine motor neuron disease: findings in 28 horses and proposal of a pathophysiological mechanism for the disease. Equine Vet J. 1994;26:409–15.

    Article  PubMed  CAS  Google Scholar 

  125. Divers TJ, Cummings JE, de Lahunta A, Hintz HF, Mohammed HO. Evaluation of the risk of motor neuron disease in horses fed a diet low in vitamin E and high in copper and iron. Am J Vet Res. 2006;67:120–6.

    Article  PubMed  CAS  Google Scholar 

  126. Mohammed HO, Starkey SR, Stipetic K, Divers TJ, Summers BA, et al. The role of dietary antioxidant insufficiency on the permeability of the blood–brain barrier. J Neuropathol Exp Neurol. 2008;67:1187–93.

    Article  PubMed  Google Scholar 

  127. Kaya M, Cimen V, Kalayci R, Kucuk M, Gurses C, et al. Catalase and alpha-tocopherol attenuate blood-brain barrier breakdown in pentylenetetrazole-induced epileptic seizures in acute hyperglycaemic rats. Pharmacol Res. 2002;45:129–33.

    Article  PubMed  CAS  Google Scholar 

  128. Oztaş B, Kiliç S, Dural E, Ispir T. Influence of antioxidants on the blood–brain barrier permeability during epileptic seizures. J Neurosci Res. 2001;66:674–8.

    Article  PubMed  Google Scholar 

  129. Orrell RW, Lane RJM, Ross M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Amyotroph Lateral Scler. 2008;9:195–211.

    Article  PubMed  CAS  Google Scholar 

  130. Wang H, O’Reilly ÉJ, Weisskopf MG, Logroscino G, McCullough ML, et al. Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol. 2011;173:595–602.

    Article  PubMed  Google Scholar 

  131. Devigili G, Uçeyler N, Beck M, Reiners K, Stoll G, et al. Vasculitis-like neuropathy in amyotrophic lateral sclerosis unresponsive to treatment. Acta Neuropathol. 2011;122:343–52.

    Article  PubMed  Google Scholar 

  132. Maldonado ME, Williams Jr RC, Adair JC, Hart BL, Gregg L, et al. Neuropsychiatric systemic lupus erythematosus presenting as amyotrophic lateral sclerosis. J Rheumatol. 2002;29:633–5.

    PubMed  Google Scholar 

  133. Rizvanov AA, Kiyasov AP, Gaziziov IM, Yilmaz TS, Kaligin MS, et al. Human umbilical cord blood cells transfected with VEGF and L(1)CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis—a novel approach in stem cell therapy. Neurochem Int. 2008;53:389–94.

    Article  PubMed  CAS  Google Scholar 

  134. Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease—a double-edged sword. Neuron. 2002;35:419–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Muscular Dystrophy Association (grant #92452) and the USF Department of Neurosurgery and Brain Repair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svitlana Garbuzova-Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, M.C.O., Voltarelli, J.C., Sanberg, P.R. et al. Immunological Aspects in Amyotrophic Lateral Sclerosis. Transl. Stroke Res. 3, 331–340 (2012). https://doi.org/10.1007/s12975-012-0177-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0177-6

Keywords

Navigation