Skip to main content
Log in

Structural and magnetic properties of ZnFe2O4 films deposited by low sputtering power

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To validate the correctness of the Hartman-Perdok Theory (HPT), which indicates that the {111} planes have the lowest surface energy in spinel ferrites, the {111} plane orientated ZnFe2O4 thin films on Si(100), Si(111), and SiO2(500 nm)/Si(111) substrates were obtained through a radio frequency (RF) magnetron sputtering method with a low sputtering power of 80 W. All of the experiments prove that the atom energy determined by sputtering power plays an important role in the orientated growth of the ZnFe2O4 thin films, and it matches well with HPT. The ZnFe2O4 thin films exhibit ferromagnetism with a magnetization of 84.25 kJ/mol at room temperature, which is different from the bulk counterpart (antiferromagnetic as usual). The ZnFe2O4 thin films can be used as high-quality oriented inducing buffer layers for other spinel (Ni, Mn)Zn ferrite thin films and may have high potential in magnetic thin films-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.W. Cui, F. Shi, Y.G. Li, and S.Y. Wang, Orthogonal analysis for perovskite structure microwave dielectric ceramic thin films fabricated by the RF magnetron-sputtering method, J. Mater. Sci. Mater. Electron., 21(2010), No.4, p.349.

    Article  CAS  Google Scholar 

  2. N.E. Kazantseva, Y.I. Bespyatykh, I. Sapurina, J. Stejskal, J. Vilčáková, and P. Sáha, Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating, J. Magn. Magn. Mater., 301(2006), No.1, p.155.

    Article  CAS  Google Scholar 

  3. K. Tanaka, K. Fujita, S. Nakashima, H. Hojo, and T. Matoba, Magnetic properties of disordered ferrite and ilmenite-hematite thin films, J. Magn. Magn. Mater., 321(2009), No.7, p.818.

    Article  CAS  Google Scholar 

  4. C.M. Liu and J.C. Chen, Growth of Mg-Al spinel microcrystals on a sapphire surface using a solution-precipitation method, Appl. Phys. Lett., 89(2006), No.1, art. No.011912.

  5. U. Lüders, F. Sánchez, and J. Fontcuberta, Self-organized structures in CoCr2O4(001) thin films: Tunable growth from pyramidal clusters to a {111} fully faceted surface, Phys. Rev. B, 70(2004), No.4, art. No.045403.

  6. A. Lisfi, C.M. Williams, L.T. Nguyen, J.C. Lodder, A. Coleman, H. Corcoran, A. Johnson, P. Chang, A. Kumar, and W. Morgan, Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films, Phys. Rev. B, 76(2007), No.5, art. No.054405.

  7. H.C. Su, J.Y. Dai, Y.F. Liao, Y.H. Wu, J.C.A. Huang, and C.H. Lee, The preparation of Zn-ferrite epitaxial thin film from epitaxial Fe3O4:ZnO multilayers by ion beam sputtering deposition, Thin Solid Films, 518(2010), No.24, p.7275.

    Article  CAS  Google Scholar 

  8. K. Balakrishnan, S.K. Arora, and I.V. Shvets, Strain relaxation studies of the Fe3O4/MgO (100) heteroepitaxial system grown by magnetron sputtering, J. Phys. Condens. Matter, 16(2004), No.30, p.5387.

    Article  CAS  Google Scholar 

  9. R.K. Mishra and G. Thomas, Surface energy of spinel, J. Appl. Phys., 48(1977), No.11, p.4576.

    Article  CAS  Google Scholar 

  10. P. Hartman, Crystal Growth: an Introduction, North-Holland Publishing, Amsterdam, 1973, p.367.

    Google Scholar 

  11. W. Naoki, S. Kazuo, and M. Nobuyasu, Stress-induced magnetization for epitaxial spinel ferrite films through interface engineering, Appl. Phys. Lett., 85(2004), No.7, p.1199.

    Article  Google Scholar 

  12. R. Dekkers, C.F. Woensdregt, and P. Wollants, Surface modeling of crystalline non-metallic inclusions, J. Non Cryst. Solids, 282(2001), No.1, p.49.

    Article  CAS  Google Scholar 

  13. C.F. Woensdregt, Computation of surface energies in an electrostatic point charge model: I. Theory, Phys. Chem. Miner., 19(1992), No.1, p.52.

    CAS  Google Scholar 

  14. M.R. Huang, C.W. Lin, and H.Y. Lu, Crystallographic facetting in solid-state reacted LiMn2O4 spinel powder, Appl. Surf. Sci., 177(2001), No.1, p.103.

    Article  CAS  Google Scholar 

  15. W.D. Davis and T.A. Vanderslice, Ion energies at the cathode of a glow discharge, Phys. Rev., 131(1963), No.1, p.219.

    Article  Google Scholar 

  16. N. Seisuke, F. Koji, T. Katsuhisa, and H. Kazuyuki, High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film, J. Phys. Condens. Matter, 17(2005), No.1, p.137.

    Article  Google Scholar 

  17. S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, and I. Tanaka, First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution, Phys. Rev. B, 75(2007), No.17, art. No.174443.

  18. J. Hubsch, G. Gavoille, and J. Bolfa, Percolation and magnetic order in diluted spinels, J. Appl. Phys., 49(1978), No.3, p.1363.

    Article  CAS  Google Scholar 

  19. J. Dash, S. Prasad, N. Venkataramani, R. Krishnan, P. Kishan, N. Kumar, S.D. Kulkarni, and S.K. Date, Study of magnetization and crystallization in sputter deposited LiZn ferrite thin films, J. Appl. Phys., 86(1999), No.6, p.3303.

    Article  CAS  Google Scholar 

  20. P.M.G. Nambissan, C. Upadhyay, and H.C. Verma, Positron lifetime spectroscopic studies of nanocrystalline ZnFe2O4, J. Appl. Phys., 93(2003), No.10, p.6320.

    Article  CAS  Google Scholar 

  21. B. Jeyadevan, K. Tohji, and K. Nakatsuka, Structure analysis of coprecipitated ZnFe2O4 by extended x-ray-absorption fine structure, J. Appl. Phys., 76(1994), No.10, p.6325.

    Article  CAS  Google Scholar 

  22. R.H. Kodama and A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles, Phys. Rev. B, 59(1999), No.9, p.6321.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Yu.

Additional information

This work was financially supported by the National Natural Science Foundation of China (No.51101028) and the Fundamental Research Funds for the Central Universities of China (No.E022050205).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Jl., Yu, Z., Sun, K. et al. Structural and magnetic properties of ZnFe2O4 films deposited by low sputtering power. Int J Miner Metall Mater 19, 964–968 (2012). https://doi.org/10.1007/s12613-012-0655-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0655-6

Keywords

Navigation