Skip to main content
Log in

Intestinal intraepithelial TCRγδ+ T cells are activated by normal commensal bacteria

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

TCRγδ+ T cells play a critical role in protecting the intestinal mucosa against pathogenic infection. In the absence of infection, TCRγδ+ T cell activation must be continuously regulated by T regulatory cells (Treg) to prevent the development of colitis. However, the activation of intestinal TCRγδ+ T cells under normal conditions has not been clearly resolved. In order to determine TCRγδ+ T cell activation in vivo, we designed an NF-κB based reporter system. Using the recombinant lentiviral method, we delivered the NF-κB reporter to isolated TCRγδ+ T cells, which were then adoptively transferred into normal mice. Our data indicate that the NF-κB activation level in TCRγδ+ T cells is higher in the intestinal intraepithelial layer than in the lamina propria region. In addition, the surface expression level of lymphocyte activation marker CD69 in TCRγδ+ T cells is also higher in the intestinal intraepithelial layer and this activation was reduced by Sulfatrim treatment which removes of commensal bacteria. Collectively, our data indicate that the TCRγδ+ T cell population attached to the intestinal lumen is constitutively activated even by normal commensal bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TCR:

t cell receptor

APC:

antigen presenting cell

Treg:

regulatory T cell

IEL:

intraepithelial lymphocyte

LPL:

lamina propria lymphocyte

LTR:

long terminal repeat

References

  • Allison, J.P. and Havran, W.L. 1991. The immunobiology of T cells with invariant gamma delta antigen receptors. Ann. Rev. Immunol. 9, 679–705.

    Article  CAS  Google Scholar 

  • Bonneville, M., O’Brien, R.L., and Born, W.K. 2010. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Capone, M., Hockett, R.D., Jr., and Zlotnik, A. 1998. Kinetics of T cell receptor beta, gamma, and delta rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44(+)CD25(+) Pro-T thymocytes. Proc. Natl. Acad. Sci. USA 95, 12522–12527.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Chou, K., Fuchs, E., Havran, W.L., and Boismenu, R. 2002. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc. Natl. Acad. Sci. USA 99, 14338–14343.

    Article  PubMed  CAS  Google Scholar 

  • Chien, Y.H., Iwashima, M., Wettstein, D.A., Kaplan, K.B., Elliott, J.F., Born, W., and Davis, M.M. 1987. T-cell receptor delta gene rearrangements in early thymocytes. Nature 330, 722–727.

    Article  PubMed  CAS  Google Scholar 

  • Chien, Y.H. and Konigshofer, Y. 2007. Antigen recognition by gammadelta T cells. Immunol. Rev. 215, 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Garman, R.D., Doherty, P.J., and Raulet, D.H. 1986. Diversity, rearrangement, and expression of murine T cell gamma genes. Cell. 45, 733–742.

    Article  PubMed  CAS  Google Scholar 

  • Haas, W., Pereira, P., and Tonegawa, S. 1993. Gamma/delta cells. Ann. Rev. Immunol. 11, 637–685.

    Article  CAS  Google Scholar 

  • Hayday, A.C. 2009. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196.

    Article  PubMed  CAS  Google Scholar 

  • Hayday, A.C., Saito, H., Gillies, S.D., Kranz, D.M., Tanigawa, G., Eisen, H.N., and Tonegawa, S. 1985. Structure, organization, and somatic rearrangement of T cell gamma genes. Cell. 40, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Hayday, A. and Tigelaar, R. 2003. Immunoregulation in the tissues by gammadelta T cells. Nat. Rev. Immunol. 3, 233–242.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, M.S. and Ghosh, S. 2011. NF-kappaB in immunobiology. Cell Res. 21, 223–244.

    Article  PubMed  CAS  Google Scholar 

  • Holtmeier, W. and Kabelitz, D. 2005. Gammadelta T cells link innate and adaptive immune responses. Chem. Immunol. Allergy 86, 151–183.

    Article  PubMed  CAS  Google Scholar 

  • Howe, C.J., LaHair, M.M., Maxwell, J.A., Lee, J.T., Robinson, P.J., Rodriguez-Mora, O., McCubrey, J.A., and Franklin, R.A. 2002. Participation of the calcium/calmodulin-dependent kinases in hydrogen peroxide-induced Ikappa B phosphorylation in human T lymphocytes. J. Biol. Chem. 277, 30469–30476.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki-Ohara, K., Chinen, T., Matsuzaki, G., Sasaki, A., Sakamoto, Y., Hiromatsu, K., Nakamura-Uchiyama, F., Nawa, Y., and Yoshimura, A. 2004. Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J. Immunol. 173, 1390–1398.

    PubMed  CAS  Google Scholar 

  • Ito, Y., Usui, T., Kobayashi, S., Iguchi-Hashimoto, M., Ito, H., Yoshitomi, H., Nakamura, T., Shimizu, M., Kawabata, D., Yukawa N., and et al. 2009. Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum. 60, 2294–2303.

    Article  PubMed  CAS  Google Scholar 

  • Livak, F., Tourigny, M., Schatz, D.G., and Petrie, H.T. 1999. Characterization of TCR gene rearrangements during adult murine T cell development. J. Immunol. 162, 2575–2580.

    PubMed  CAS  Google Scholar 

  • Pardoll, D.M., Fowlkes, B.J., Lew, A.M., Maloy, W.L., Weston, M.A., Bluestone, J.A., Schwartz, R.H., Coligan, J.E., and Kruisbeek, A.M. 1988. Thymus-dependent and thymus-independent developmental pathways for peripheral T cell receptor-gamma delta-bearing lymphocytes. J. Immunol. 140, 4091–4096.

    PubMed  CAS  Google Scholar 

  • Park, S.G., Mathur, R., Long, M., Hosh, N., Hao, L., Hayden, M.S., and Ghosh, S. 2010. T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity 33, 791–803.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.G., Schulze-Luehrman, J., Hayden, M.S., Hashimoto, N., Ogawa, W., Kasuga, M., and Ghosh, S. 2009. The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-kappaB and activate T cells. Nat. Immunol. 10, 158–166.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, C.E., Lalor, S.J., Sweeney, C.M., Brereton, C.F., Lavelle, E.C., and Mills, K.H. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Turchinovich, G. and Pennington, D.J. 2011. T cell receptor signalling in gammadelta cell development: strength isn’t everything. Trends Immunol. 32, 567–573.

    Article  PubMed  CAS  Google Scholar 

  • Weigmann, B., Tubbe, I., Seidel, D., Nicolaev, A., Becker, C., and Neurath, M.F. 2007. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nature Protocols 2, 2307–2311.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, S., Tanaka, Y., Tsutsumi, S., Aburatani, H., Minato, N., and Ihara, S. 2005. Analysis of mechanism for human gammadelta T cell recognition of nonpeptide antigens. Biochem. Biophys. Res. Commun. 334, 349–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Gyoo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, S.P., Kang, JA. & Park, SG. Intestinal intraepithelial TCRγδ+ T cells are activated by normal commensal bacteria. J Microbiol. 50, 837–841 (2012). https://doi.org/10.1007/s12275-012-2468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2468-8

Keywords

Navigation