Skip to main content
Log in

Characterization, gene cloning, and heterologous expression of β-mannanase from a thermophilic Bacillus subtilis

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus subtilis BCC41051 producing a thermostable β-mannanase was isolated from soybean meal-enriched soil and was unexpectedly found to be thermophilic in nature. The extracellular β-mannanase (ManA) produced was hydrophilic, as it was not precipitated even with ammonium sulfate at 80% saturation. The estimated molecular weight of ManA was 38.0 kDa by SDS-PAGE with a pi value of 5.3. Optimal pH and temperature for mannan-hydrolyzing activity was 7.0 and 60°C, respectively. The enzyme was stable over a pH range of 5.0–11.5, and at temperatures of up to 60°C for 30 min, with more than 80% of its activity retained. ManA was strongly inhibited by Hg2+ (1 mM), but was sensitive to other divalent ions to a lesser degree. The gene of ManA encoded a protein of 362 amino acid residues, with the first 26 residues identified as a signal peptide. High expression of recombinant ManA was achieved in both Escherichia coli BL21 (DE3) (415.18 U/ml) and B. megaterium UNcat (359 U/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S. and S.N. Cohen. 1979. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet. 168, 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Choct, M. and G. Annison. 1992. The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr. 67, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • de O. Petkowicz, C.L., F. Reicher, H. Chanzy, F.R. Taravel, and R. Vuong. 2001. Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr. Polym. 44, 107–112.

    Article  CAS  Google Scholar 

  • de Vries, R.P. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl. Microbiol. Biotechnol. 61, 10–20.

    PubMed  Google Scholar 

  • el-Helow, E.R. and A.A. Khattab. 1996. The development of a Bacillus subtilis 168 culture condition for enhanced and accelerated — mannanase production. Acta Microbiol. Immunol. Hung. 43, 289–299.

    PubMed  CAS  Google Scholar 

  • Gerhardt, P., R.G.E. Murray, W.A. Wood, and N.R. Krieg. 1994. Methods for General and Molecular Bacteriology. Am. Soc. Microbiol., Washington, D.C., USA.

    Google Scholar 

  • Hatada, Y., N. Takeda, K. Hirasawa, Y. Ohta, R. Usami, Y. Yoshida, W.D. Grant, S. Ito, and K. Horikoshi. 2005. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9, 497–500.

    Article  PubMed  CAS  Google Scholar 

  • Heck, J.X., L.H. de Barros Soares, and M.A.Z. Ayub. 2005. Optimization of xylanase and mannanase production by Bacillus circulans strain BL53 on solid-state cultivation. Enzym. Microb. Technol. 37, 417–423.

    Article  CAS  Google Scholar 

  • Jackson, M.E., D.W. Fodge, and H.Y. Hsiao. 1999. Effects of β-mannanase in corn-soybean meal diets on laying hen performance. Poult. Sci. 78, 1737–1741.

    PubMed  CAS  Google Scholar 

  • Jiang, Z., Y. Wei, D. Li, L. Li, P. Chai, and I. Kusakabe. 2006. High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr. Polym. 66, 88–96.

    Article  CAS  Google Scholar 

  • Kato, Y. and Y. Asano. 2003. High-level expression of a novel FMN-dependent heme-containing lyase, phenylacetaldoxime dehydratase of Bacillus sp. strain OxB-1, in heterologous hosts. Protein Expr. Purif. 28, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Khanongnuch, C., K. Asada, H. Tsuruga, T. Ooi, S. Kinoshita, and S. Lumyong. 1998. β-Mannanase and xylanase of Bacillus subtilis 5H active for bleaching of crude pulp. J. Ferment. Bioeng. 86, 461–466.

    Article  CAS  Google Scholar 

  • Khanongnuch, C., T. Ooi, and S. Kinoshita. 1999. Cloning and nucleotide sequence of β-mannanase and cellulase genes from Bacillus sp. 5H. World J. Microbiol. Biotechnol. 15, 249–258.

    Article  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Langhout, D.J., J.B. Schutte, J. de Jong, H. Sloetjes, M.W. Verstegen, and S. Tamminga. 2000. Effect of viscosity on digestion of nutrients in conventional and germ-free chicks. Br. J. Nutr. 83, 533–540.

    PubMed  CAS  Google Scholar 

  • Lee, J.T., S. Connor-Appleton, C.A. Bailey, and A.L. Cartwright. 2005. Effects of guar meal by-product with and without β-mannanase Hemicell on broiler performance. Poult. Sci. 84, 1261–1267.

    PubMed  CAS  Google Scholar 

  • Ma, Y., Y. Xue, Y. Dou, Z. Xu, W. Tao, and P. Zhou. 2004. Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles 8, 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza, N.S., M. Arai, T. Kawaguchi, T. Yoshida, and L.M. Joson. 1994. Purification and properties of mannanase from Bacillus subtilis. World J. Microbiol. Biotechnol. 10, 551–555.

    Article  CAS  Google Scholar 

  • Mendoza, N.S., M. Arai, K. Sugimoto, M. Ueda, T. Kawaguchi, and L.M. Joson. 1995. Cloning and sequencing of β-mannanase gene from Bacillus subtilis NM-39. Biochim. Biophys. Acta. 1243, 552–554.

    PubMed  Google Scholar 

  • Moreira, L.R. and E.X. Filho. 2008. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 79, 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Panbangred, W., K. Weeradechapon, S. Udomvaraphant, K. Fujiyama, and V. Meevootisom. 2000. High expression of the penicillin G acylase gene (pac) from Bacillus megaterium UN1 in its own pac minus mutant. J. Appl. Microbiol. 89, 152–157.

    Article  PubMed  CAS  Google Scholar 

  • Politz, O., M. Krah, K.K. Thomsen, and R. Borriss. 2000. A highly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus. Appl. Microbiol. Biotechnol. 53, 715–721.

    Article  PubMed  CAS  Google Scholar 

  • Richards, S.A. 1970. The role of hypothalamic temperature in the control of panting in the chicken exposed to heat. J. Physiol. 211, 341–358.

    PubMed  CAS  Google Scholar 

  • Rygus, T. and W. Hillen. 1991. Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Appl. Microbiol. Biotechnol. 35, 594–599.

    Article  PubMed  CAS  Google Scholar 

  • Rygus, T., A. Scheler, R. Allmansberger, and W. Hillen. 1991. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch. Microbiol. 155, 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J. and D.W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd (ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Sengupta, S., M.L. Jana, D. Sengupta, and A.K. Naskar. 2000. A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotechnol. 53, 732–735.

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis, A., P. Hoover, and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771.

    Article  PubMed  Google Scholar 

  • Studier, F.W., A.H. Rosenberg, J.J. Dunn, and J.W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, G. and J. Sygusch. 1990. Purification and characterization of thermostable β-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl. Environ. Microbiol. 56, 3505–3510.

    PubMed  CAS  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Yang, P., Y. Li, Y. Wang, K. Meng, H. Luo, T. Yuan, Y. Bai, Z. Zhan, and B. Yao. 2009. A novel β-mannanase with high specific activity from Bacillus circulans CGMCC1554: gene cloning, expression and enzymatic characterization. Appl. Biochem. Biotechnol. 159, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, K.H., S. Chung, and B.L. Lim. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46, 344–349.

    Article  PubMed  CAS  Google Scholar 

  • Zakaria, M.M., S. Yamamoto, and T. Yagi. 1998. Purification and characterization of an endo-1,4-β-mannanase from Bacillus subtilis KU-1. FEMS Microbiol. Lett. 158, 25–31.

    CAS  Google Scholar 

  • Zhang, M., X.L. Chen, Z.H. Zhang, C.Y. Sun, L.L. Chen, H.L. He, B.C. Zhou, and Y.Z. Zhang. 2009. Purification and functional characterization of endo-β-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Appl. Microbiol. Biotechnol. 83, 865–873.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Z. He, and K. Hu. 2000. Purification and characterization of β-mannanase from Bacillus licheniformis for industrial use. Biotechnol. Lett. 22, 1375–1378.

    Article  CAS  Google Scholar 

  • Zhang, Q., X. Yan, L. Zhang, and W. Tang. 2006. Cloning, sequence analysis, and heterologous expression of a β-mannanase gene from Bacillus subtilis Z-2. Mol. Biol. 40, 368–374.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithaya Meevootisom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summpunn, P., Chaijan, S., Isarangkul, D. et al. Characterization, gene cloning, and heterologous expression of β-mannanase from a thermophilic Bacillus subtilis . J Microbiol. 49, 86–93 (2011). https://doi.org/10.1007/s12275-011-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0357-1

Keywords

Navigation