Skip to main content
Log in

Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multifunctional probes for simultaneous magnetic resonance imaging (MRI) and drug delivery have attracted considerable interest due to their promising potential applications in the early-stage diagnosis and therapy of the diseases. In this study, hollow manganese phosphate nanoparticles (HMP NPs) with an average diameter of 18 nm were synthesized and aminated through silanization, which enabled the covalent conjugation of biocompatible poly(ethylene glycol) (PEG) on their surfaces. The anti-tumor drug doxorubicin (DOX) could be loaded into the hollow cavities. Under physiological conditions (pH 7.4), the NPs showed low MRI T 1 contrast (r 1 = 1.19 L·mmol−1·s−1), whereas high T 1 enhancement (r 1 = 5.22 L·mmol−1·s−1) was achieved after dissolving them in endosome/lysosome mimetic conditions (pH 5.4). This is due to the fact that the NPs were easily eroded, which resulted in the release of Mn2+ at low pH. To use this interesting phenomenon for targeted DOX drug delivery, we conjugated the tumor-targeting ligand folic acid (FA) on HMP NPs and investigated their drug delivery capacity and cytotoxicity to cell lines expressing different amount of folate receptor (FR). KB cells showed more significant cellular uptake than HeLa cells and A549 cells, as confirmed by confocal laser scanning microscopy (CLSM), flow cytometry and cellular T 1-weighted MRI. Furthermore, the drug-loaded HMP NPs exhibited greater cytotoxicity to KB cells. Our results suggest that functionalized HMP NPs can act as an effective multifunctional probe for selective diagnosis with MRI, as well as giving efficient targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Louie, A. Multimodality imaging probes: Design and challenges. Chem. Rev. 2010, 110, 3146–3195.

    Article  CAS  Google Scholar 

  2. Jarzyna, P. A.; Gianella, A.; Skajaa, T.; Knudsen, G.; Deddens, L. H.; Cormode, D. P.; Fayad, Z. A.; Mulder, W. J. M. Multifunctional imaging nanoprobes. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 138–150.

    Article  CAS  Google Scholar 

  3. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762.

    Article  CAS  Google Scholar 

  4. Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301, 1884–1886.

    Article  CAS  Google Scholar 

  5. Jin, Y.; Jia, C.; Huang, S. W.; O’Donnell, M.; Gao, X. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 41.

    Article  Google Scholar 

  6. Veiseh, O.; Gunn, J. W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Delivery Rev. 2010, 62, 284–304.

    Article  CAS  Google Scholar 

  7. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

    Article  CAS  Google Scholar 

  8. Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of mul-tifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.

    Article  CAS  Google Scholar 

  9. Xie, J.; Liu, G.; Eden, H. S.; Ai, H.; Chen, X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 2011, 44, 883–892.

    Article  CAS  Google Scholar 

  10. Ho, D.; Sun, X.; Sun, S. Monodisperse Magnetic nano-particles for theranostic applications. Acc. Chem. Res. 2011, 44, 875–882.

    Article  CAS  Google Scholar 

  11. Na, H. B.; Lee, J. H.; An, K. J.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D. H.; Kim, S. T.; Kim, S. H.; Kim, S. W.; Lim, K. H.; Kim, K. S.; Kim, S. O.; Hyeon, T. Development of a T 1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5397–5401.

    Article  CAS  Google Scholar 

  12. Hu, F.; Jia, Q.; Li, Y.; Gao, M. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T 1- and T 2-weighted magnetic resonance imaging. Nanotechnology 2011, 22, 245604.

    Article  Google Scholar 

  13. Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M. T.; Quinones-Hinojosa, A. et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchyrnal stem cells. J. Am. Chem. Soc. 2011, 133, 2955–2961.

    Article  CAS  Google Scholar 

  14. Xing, R.; Liu, G.; Quan, Q.; Bhirde, A.; Zhang, G.; Jin, A.; Bryant, L. H.; Zhang, A.; Liang, A.; Eden, H. S. et al. Functional MnO nanoclusters for efficient siRNA delivery. Chem. Commun. 2011, 47, 12152–12154.

    Article  CAS  Google Scholar 

  15. Huang, C. C.; Khu, N. H.; Yeh, C. S. The characteristics of sub 10 nm manganese oxide T(1) contrast agents of different nanostructured morphologies. Biomaterials 2010, 31, 4073–4078.

    Article  CAS  Google Scholar 

  16. Xing, R.; Zhang, F.; Xie, J.; Aronova, M.; Zhang, G.; Guo, N.; Huang, X.; Sun, X.; Liu, G.; Bryant, L. H.; Bhirde, A. el al. Polyaspartic acid coated manganese oxide nanoparticles for efficient liver MRI. Nanoscale 2011, 3, 4943–4935.

    Article  CAS  Google Scholar 

  17. Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512–523.

    Article  CAS  Google Scholar 

  18. Ha, T. L.; Kim, H. J.; Shin, J.; Im, G. H.; Lee, J. W.; Heo, H.; Yang, J.; Kang, C. M.; Choe, Y. S.; Lee, J. H. et al. Development of target-specific multimodality imaging agent by using hollow manganese oxide nanoparticles as a platform. Chem. Commun. 2011, 47, 9176–9178.

    Article  CAS  Google Scholar 

  19. Shin, J. M.; Md Anisur, R.; Ko, M. K.; Im, G. H.; Lee, J. H.; Lee, I. S. Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew. Chem. Int. Ed. 2009, 48, 321–324.

    Article  CAS  Google Scholar 

  20. Chen, Y.; Chu, C.; Zhou, Y.; Ru, Y.; Chen, H.; Chen, F.; He, Q.; Zhang, Y.; Zhang, L.; Shi, J. Reversible pore-structure evolution in hollow silica nanocapsules: Large pores for siRNA delivery and nanoparticle collecting. Small 2011, 7, 2935–2944.

    Article  CAS  Google Scholar 

  21. Chen, Y.; Chen, H.; Zhang, S.; Chen, F.; Zhang, L.; Zhang, J.; Zhu, M.; Wu, H.; Guo, L.; Feng, J.; Shi, J. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv. Funct. Mater. 2011, 21, 270–278.

    Article  CAS  Google Scholar 

  22. Wu, H.; Zhang, S.; Zhang, J.; Liu, G.; Shi, J.; Zhang, L.; Cui, X.; Ruan, M.; He, Q.; Bu, W. A hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv. Funct. Mater. 2011, 21, 1850–1862.

    Article  CAS  Google Scholar 

  23. Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563.

    Article  CAS  Google Scholar 

  24. Lee, E. S.; Oh, K. T.; Kim, D.; Youn, Y. S.; Bae, Y. H. Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine). J. Control. Release 2007, 123, 19–26.

    Article  CAS  Google Scholar 

  25. Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 2010, 31, 8371–8381.

    Article  CAS  Google Scholar 

  26. Tang, H.; Guo, J.; Sun, Y.; Chang, B.; Ren, Q.; Yang, W. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Int. J. Pharm. 2011, 421, 388–396.

    Article  CAS  Google Scholar 

  27. He, Q.; Gao, Y.; Zhang, L.; Bu, W.; Chen, H.; Li, Y.; Shi, J. One-pot self-assembly of mesoporous silica nanoparticle-based pH-responsive anti-cancer nano drug delivery system. J. Mater. Chem. 2011, 21, 15190–15192.

    Article  CAS  Google Scholar 

  28. Shapiro, E. M.; Koretsky, A. P. Convertible manganese contrast for molecular and cellular MRI. Magn. Reson. Med. 2008, 60, 265–269.

    Article  Google Scholar 

  29. Bennewitz, M. F.; Lobo, T. L.; Nkansah, M. K.; Ulas, G.; Brudvig, G. W.; Shapiro, E. M. Biocompatible and pH-Sensitive PLGA Encapsulated MnO Nanocrystals for Molecular and Cellular MRI. ACS Nano 2011, 5, 3438–3446.

    Article  CAS  Google Scholar 

  30. Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Delivery Rev. 2000, 41, 147–162.

    Article  CAS  Google Scholar 

  31. Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002, 23, 1553–1561.

    Article  CAS  Google Scholar 

  32. Hao, R.; Yu, J.; Hou, Y.; Sun, S. One-pot synthesis of hollow/porous Mn-based nanoparticles via a controlled ion transfer process. Chem. Commun. 2011, 47, 9095–9097.

    Article  CAS  Google Scholar 

  33. De Palma, R.; Peeters, S.; Van Bael, M. J.; Van den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; Maes, G. Silane ligand exchange to make hydrophobic superpara-magnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19, 1821–1831.

    Article  Google Scholar 

  34. Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D. W.; Dai, H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 2009, 48, 7668–7672.

    Article  CAS  Google Scholar 

  35. Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110–1120.

    Article  CAS  Google Scholar 

  36. Cheng, Z.; Chen, A. K.; Lee, H. Y.; Tsourkas, A. Examination of folate-targeted liposomes with encapsulated poly(2-propylacrylic acid) as a pH-responsive nanoplatform for cytosolic drug delivery. Small 2010, 6, 1398–1401.

    Article  CAS  Google Scholar 

  37. Mao, J.; Gan, Z. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(ɛ-caprolactone)]_copolymers. Macromol. Biosci. 2009, 9, 1080–1089.

    Article  CAS  Google Scholar 

  38. Coluccio, M. L.; Ciardelli, G.; Bertoni, F.; Silvestri, D.; Cristallini, C.; Giusti, P.; Barbani, N. Enzymatic erosion of bioartificial membranes to control drug delivery. Macromol. Biosci. 2006, 6, 403–411.

    Article  CAS  Google Scholar 

  39. Luo, Z.; Cai, K.; Hu, Y.; Li, J.; Ding, X.; Zhang, B.; Xu, D.; Yang, W.; Liu, P. Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv. Mater. 2012, 24, 431–435.

    Article  CAS  Google Scholar 

  40. Luo, Z.; Cai, K.; Hu, Y.; Zhao, L.; Liu, P.; Duan, L.; Yang, W. Mesoporous silica nanoparticles end-capped with collagen: Redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem. Int. Ed. 2011, 50, 640–643.

    Article  CAS  Google Scholar 

  41. Tang, S.; Huang, X.; Chen, X.; Zheng, N. Hollow meso-porous zirconia nanocapsules for drug delivery. Adv. Funct. Mater. 2010, 20, 2442–2447.

    Article  CAS  Google Scholar 

  42. Canal, F.; Vicent, M. J.; Pasut, G.; Schiavon, O. Relevance of folic acid/polymer ratio in targeted PEG-epirubicin conjugates. J. Control. Release 2010, 146, 388–399.

    Article  CAS  Google Scholar 

  43. Gravier, J.; Schneider, R.; Frochot, C.; Bastogne, T.; Schmitt, F.; Didelon, J.; Guillemin, F.; Barberi-Heyob, M. Improvement of meta-tetra(Hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies. J. Med. Chem. 2008, 51, 3867–3877.

    Article  CAS  Google Scholar 

  44. Koretsky, A. P.; Silva, A. C. Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed. 2004, 17, 527–531.

    Article  CAS  Google Scholar 

  45. Mukhopadhyay, S.; Linstedt, A. D. Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn(2+) efflux and protects against toxicity. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 858–863.

    Article  CAS  Google Scholar 

  46. Pan, D.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M. Manganese-based MRI contrast agents: Past, present, and future. Tetrahedron 2011, 67, 8431–8444.

    Article  CAS  Google Scholar 

  47. Liu, Y.; Mi, Y.; Zhao, J.; Feng, S. S. Multifunctional silica nanoparticles for targeted delivery of hydrophobic imaging and therapeutic agents. Int. J. Pharm. 2011, 421, 370–378.

    Article  CAS  Google Scholar 

  48. Tong, R.; Cheng, J. Anticancer polymeric nanomedicines. Polym. Rev. 2007, 47, 345–381.

    Article  CAS  Google Scholar 

  49. Yoo, H. S.; Park, T. G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Control. Release 2004, 100, 247–256.

    Article  CAS  Google Scholar 

  50. Guo, M.; Que, C.; Wang, C.; Liu, X.; Yan, H.; Liu, K. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 2011, 32, 185–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fugeng Sheng or Yanglong Hou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Hao, R., Sheng, F. et al. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 5, 679–694 (2012). https://doi.org/10.1007/s12274-012-0252-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0252-z

Keywords

Navigation