Skip to main content
Log in

A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV-vis diffuse reflectance spectroscopy confirmed that the dopant ions substitute for some of the lattice zinc ions, and furthermore, that Co2+ and Co3+ ions coexist. The as-prepared ZnO:Co samples have an extended light absorption range compared with pure ZnO and showed highly efficient photocatalytic activity, only requiring 60 min to decompose ∼93% of alizarin red dye under visible light irradiation (λ > 420 nm). The photophysical mechanism of the visible photocatalytic activity was investigated with the help of surface photovoltage spectroscopy. The results indicated that a strong electronic interaction between the Co and ZnO was present, and that the incorporation of Co promoted the charge separation and enhanced the charge transfer ability and, at the same time, effectively inhibited the recombination of photogenerated charge carriers in ZnO, resulting in high visible light photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afzaal, M.; Malik, M. A.; O’Brien, P. Preparation of zinc containing materials. New J. Chem. 2007, 31, 2029–2040.

    Article  CAS  Google Scholar 

  2. Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.

    Article  CAS  Google Scholar 

  3. Mills, A.; Wang, J. S. Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films. J. Photochem. Photobio. A 2006, 182, 181–186.

    Article  CAS  Google Scholar 

  4. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.

    Article  CAS  Google Scholar 

  5. Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P. M.; Crini, G. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C. I. acid blue 25 from aqueous solutions. Bioresour. Technol. 2008, 99, 7573–7586.

    Article  CAS  Google Scholar 

  6. Srikant, V.; Clarke, D. R. On the optical band gap of zinc oxide. J. Appl. Phys.1998, 83, 5447–5451.

    Article  CAS  Google Scholar 

  7. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater. 2002, 14, 2812–2816.

    Article  CAS  Google Scholar 

  8. Barakat, M. A.; Schaeffer, H.; Hayes, G.; Ismat-Shah, S. Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B-Environ. 2005, 57, 23–30.

    Article  CAS  Google Scholar 

  9. Inamdar, D. Y.; Lad, A. D.; Pathak, A. K.; Dubenko, I.; Ali, N.; Mahamuni, S. Ferromagnetism in ZnO nanocrystals: Doping and surface chemistry. J. Phys. Chem. C 2010, 114, 1451–1459.

    Article  CAS  Google Scholar 

  10. Qiu, X. Q.; Li, L. O.; Li, G. S. Nature of the abnormal band gap narrowing in highly crystalline Zn1−x CoxO nanorods. Appl. Phys. Lett. 2006, 88, 114103.

    Article  Google Scholar 

  11. Jug, K.; Tikhomirov, V. A. Comparative studies of cation doping of ZnO with Mn, Fe, and Co. J. Phys. Chem. A 2009, 113, 11651–11655.

    Article  CAS  Google Scholar 

  12. Kim, Y, II; Seshadri, R. Optical properties of cation-substituted zinc oxide. Inorg. Chem. 2008, 47, 8437–8443.

    Article  CAS  Google Scholar 

  13. Martyanov, I. N.; Uma, S.; Rodrigues, S.; Klabunde, K. J. Structural defects cause TiO2-based photocatalysts to be active in visible light. Chem. Commun. 2004, 2476–2477.

  14. Zhao, Q. D.; Wang, D. J.; Peng, L. L.; Lin, Y. H.; Yang, M.; Xie, T. F. Surface photovoltage study of photogenerated charges in ZnO nanorods array grown on ITO. Chem. Phys. Lett. 2007, 434, 96–100.

    Article  CAS  Google Scholar 

  15. Yuhas, B. D.; Zitoun, D. O.; Pauzauskie, P. J.; He, R. R.; Yang, P. D. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed. 2006, 45, 420–423.

    Article  CAS  Google Scholar 

  16. Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S. X-ray photoelectron spectroscopy and Auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134–140.

    Article  CAS  Google Scholar 

  17. Szörényi, T.; Laude, L. D.; Bertóti, I.; Kántor, Z.; Geretovszky, Z. Excimer laser processing of indium-tin-oxide films: An optical investigation. J. Appl. Phys. 1995, 78, 6211–6219.

    Article  Google Scholar 

  18. Major, S.; Kumar, S.; Bhatnagar, M.; Chopra, K. L. Effect of hydrogen plasma treatment on transparent conducting oxides. Appl. Phys. Lett. 1986, 49, 394–396.

    Article  CAS  Google Scholar 

  19. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. In Handbook of X-Ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin Elmer: Eden Prairie, 1992; p. 83.

    Google Scholar 

  20. Wang, X. F.; Zheng, R. K.; Liu, Z. W.; Ho, H. P.; Xu, J. B.; Ringer, S. P. Structural, optical and magnetic properties of co-doped ZnO nanorods with hidden secondary phases. Nanotechnology 2008, 19, 455702.

    Article  Google Scholar 

  21. Jayakumar, O. D.; Sudakar, C.; Persson, C.; Sudarsan, V.; Sakuntala, T.; Naik, R.; Tyagi, A. K. 1D Morphology stabilization and enhanced magnetic properties of Co:ZnO nanostructures on Co doping with Li: A template-free synthesis. Cryst. Growth Des. 2009, 9, 4450–4455.

    Article  CAS  Google Scholar 

  22. Kim, Y. D.; Cooper, S. L.; Klein, M. V.; Jonker, B. T. Spectroscopic ellipsometry study of the diluted magnetic semiconductor system Zn(Mn,Fe,Co)Se. Phys. Rev. B 1994, 49, 1732–1742.

    Article  CAS  Google Scholar 

  23. Liu, G. M.; Li, X. Z.; Zhao, J. C.; Horikoshi, S.; Hidaka, H. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: An experimental and theoretical examination. J. Mol. Catal. A: Chem. 2000, 153, 221–229.

    Article  CAS  Google Scholar 

  24. Lee, Y. R.; Ramdas, A. K.; Aggarwal, R. L. Energy-gap, excitonic, and “internal” Mn2+ optical-transition in Mn-based II–VI diluted magnetic semiconductors. Phys. Rev. B 1988, 38, 10600–10610.

    Article  CAS  Google Scholar 

  25. Wang, B. Q.; Xia, C. H.; Iqbal, J.; Tang, N. J.; Sun, Z. R.; Lv, Y.; Wu, L. Influences of Co doping on the structural, optical and magnetic properties of ZnO nanorods synthesized by hydrothermal route. Solid State Sci. 2009, 11, 1419–1422.

    Article  CAS  Google Scholar 

  26. Wang, X. F.; Song, F. Q.; Chen, Q.; Wang, T. Y.; Wang, J. L.; Liu, P.; Shen, M. R.; Wan, J. G.; Wang, G. H.; Xu, J. B. Scaling dopant states in a semiconducting nanostructure by chemically resolved electron energy-loss spectroscopy: A case study on Co-doped ZnO. J. Am. Chem. Soc. 2010, 132, 6492–6497.

    Article  CAS  Google Scholar 

  27. Walsh, A.; Da Silva, J. L. F.; Wei, S. H. Theoretical description of carrier mediated magnetism in cobalt doped ZnO. Phys. Rev. Lett. 2008, 100, 256401.

    Article  Google Scholar 

  28. Kittilstved, K. R.; Liu, W. K.; Gamelin D. R. Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 2006, 5, 291–297.

    Article  CAS  Google Scholar 

  29. Gulion, A.; Condorelli, G. G.; Fragalà, I.; Egdell, R. G. Surface segregation of Sb in doped TiO2 rutile. Appl. Surf. Sci. 1995, 90, 289–295.

    Article  Google Scholar 

  30. Vorotyntsev, M. A.; Badiali, J. P.; Vieil, E. Transport across electroactive-polymer films with two mobile charge carriers. Electrochim. Acta 1996, 41, 1375–1381.

    Article  CAS  Google Scholar 

  31. Carneiro, J. O.; Teixeira, V.; Portinha, L.; Dupák, L.; Magalhães, A.; Coutinho, P. Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering. Vacuum 2005, 78, 37–46.

    Article  CAS  Google Scholar 

  32. Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhong Lin or Dejun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Lin, Y., Wang, D. et al. A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Res. 4, 1144–1152 (2011). https://doi.org/10.1007/s12274-011-0163-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0163-4

Keywords

Navigation