Skip to main content

Advertisement

Log in

FoxO, Autophagy, and Cardiac Remodeling

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

In response to changes in workload, the heart grows or shrinks. Indeed, the myocardium is capable of robust and rapid structural remodeling. In the setting of normal, physiological demand, the heart responds with hypertrophic growth of individual cardiac myocytes, a process that serves to maintain cardiac output and minimize wall stress. However, disease-related stresses, such as hypertension or myocardial infarction, provoke a series of changes that culminate in heart failure and/or sudden death. At the other end of the spectrum, cardiac unloading, such as occurs with prolonged bed rest or weightlessness, causes the heart to shrink. In recent years, considerable strides have been made in deciphering the molecular and cellular events governing pro- and anti-growth events in the heart. Prominent among these mechanisms are those mediated by FoxO (Forkhead box-containing protein, O subfamily) transcription factors. In many cell types, these proteins are critical regulators of cell size, viability, and metabolism, and their importance in the heart is just emerging. Also in recent years, evidence has emerged for a pivotal role for autophagy, an evolutionarily conserved pathway of lysosomal degradation of damaged proteins and organelles, in cardiac growth and remodeling. Indeed, evidence for activated autophagy has been detected in virtually every form of myocardial disease. Now, it is clear that FoxO is an upstream regulator of both autophagy and the ubiquitin-proteasome system. Here, we discuss recent advances in our understanding of cardiomyocyte autophagy, its governance by FoxO, and the roles each of these plays in cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation, 121(7), e46–e215.

    Article  PubMed  Google Scholar 

  2. Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. The New England Journal of Medicine, 358(13), 1370–1380.

    Article  PubMed  CAS  Google Scholar 

  3. Clark, K. L., Halay, E. D., Lai, E., & Burley, S. K. (1993). Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature, 364(6436), 412–420.

    Article  PubMed  CAS  Google Scholar 

  4. Carlsson, P., & Mahlapuu, M. (2002). Forkhead transcription factors: key players in development and metabolism. Developmental Biology, 250(1), 1–23.

    Article  PubMed  CAS  Google Scholar 

  5. Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes & Development, 14(2), 142–146.

    CAS  Google Scholar 

  6. Wijchers, P. J., Burbach, J. P., & Smidt, M. P. (2006). In control of biology: of mice, men and Foxes. The Biochemical Journal, 397(2), 233–246.

    Article  PubMed  CAS  Google Scholar 

  7. Mercado, G. E., & Barr, F. G. (2007). Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances. Current Molecular Medicine, 7(1), 47–61.

    Article  PubMed  CAS  Google Scholar 

  8. Borkhardt, A., Repp, R., Haas, O. A., Leis, T., Harbott, J., Kreuder, J., et al. (1997). Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene, 14(2), 195–202.

    Article  PubMed  CAS  Google Scholar 

  9. Burgering, B. M., & Kops, G. J. (2002). Cell cycle and death control: long live Forkheads. Trends in Biochemical Sciences, 27(7), 352–360.

    Article  PubMed  CAS  Google Scholar 

  10. Accili, D., & Arden, K. C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 117(4), 421–426.

    Article  PubMed  CAS  Google Scholar 

  11. Furuyama, T., Kitayama, K., Shimoda, Y., Ogawa, M., Sone, K., Yoshida-Araki, K., et al. (2004). Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. The Journal of Biological Chemistry, 279(33), 34741–34749.

    Article  PubMed  CAS  Google Scholar 

  12. Hosaka, T., Biggs, W. H., 3rd, Tieu, D., Boyer, A. D., Varki, N. M., Cavenee, W. K., et al. (2004). Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2975–2980.

    Article  PubMed  CAS  Google Scholar 

  13. Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W., & DePinho, R. A. (2003). Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science, 301(5630), 215–218.

    Article  PubMed  CAS  Google Scholar 

  14. Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., et al. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117(3), 399–412.

    Article  PubMed  CAS  Google Scholar 

  15. Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, J., Taniguchi, T., et al. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. The Journal of Biological Chemistry, 279(39), 41114–41123.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, J., Brault, J. J., Schild, A., Cao, P., Sandri, M., Schiaffino, S., et al. (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metabolism, 6(6), 472–483.

    Article  PubMed  CAS  Google Scholar 

  17. Bois, P. R., & Grosveld, G. C. (2003). FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. The EMBO Journal, 22(5), 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  18. Hribal, M. L., Nakae, J., Kitamura, T., Shutter, J. R., & Accili, D. (2003). Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. The Journal of Cell Biology, 162(4), 535–541.

    Article  PubMed  CAS  Google Scholar 

  19. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W. H., 3rd, Arden, K. C., & Accili, D. (2003). The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Developmental Cell, 4(1), 119–129.

    Article  PubMed  CAS  Google Scholar 

  20. Bakker, W. J., Blazquez-Domingo, M., Kolbus, A., Besooyen, J., Steinlein, P., Beug, H., et al. (2004). FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. The Journal of Cell Biology, 164(2), 175–184.

    Article  PubMed  CAS  Google Scholar 

  21. Evans-Anderson, H. J., Alfieri, C. M., & Yutzey, K. E. (2008). Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circulation Research, 102(6), 686–694.

    Article  PubMed  CAS  Google Scholar 

  22. Gross, D. N., van den Heuvel, A. P., & Birnbaum, M. J. (2008). The role of FoxO in the regulation of metabolism. Oncogene, 27(16), 2320–2336.

    Article  PubMed  CAS  Google Scholar 

  23. Ni, Y. G., Wang, N., Cao, D. J., Sachan, N., Morris, D. J., Gerard, R. D., et al. (2007). FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20517–20522.

    Article  PubMed  CAS  Google Scholar 

  24. Vogt, P. K., Jiang, H., & Aoki, M. (2005). Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle, 4(7), 908–913.

    PubMed  CAS  Google Scholar 

  25. Biggs, W. H., 3rd, Meisenhelder, J., Hunter, T., Cavenee, W. K., & Arden, K. C. (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7421–7426.

    Article  PubMed  CAS  Google Scholar 

  26. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6), 857–868.

    Article  PubMed  CAS  Google Scholar 

  27. Kops, G. J., & Burgering, B. M. (1999). Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. Journal of Molecular Medicine, 77(9), 656–665.

    Article  PubMed  CAS  Google Scholar 

  28. Nakae, J., Park, B. C., & Accili, D. (1999). Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. The Journal of Biological Chemistry, 274(23), 15982–15985.

    Article  PubMed  CAS  Google Scholar 

  29. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G., & Cohen, P. (1999). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. The Journal of Biological Chemistry, 274(24), 17179–17183.

    Article  PubMed  CAS  Google Scholar 

  30. Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, B. A., & Greenberg, M. E. (2001). Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Molecular and Cellular Biology, 21(3), 952–965.

    Article  PubMed  CAS  Google Scholar 

  31. Tang, E. D., Nunez, G., Barr, F. G., & Guan, K. L. (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. The Journal of Biological Chemistry, 274(24), 16741–16746.

    Article  PubMed  CAS  Google Scholar 

  32. Tothova, Z., & Gilliland, D. G. (2007). FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell, 1(2), 140–152.

    Article  PubMed  CAS  Google Scholar 

  33. Rena, G., Woods, Y. L., Prescott, A. R., Peggie, M., Unterman, T. G., Williams, M. R., et al. (2002). Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. The EMBO Journal, 21(9), 2263–2271.

    Article  PubMed  CAS  Google Scholar 

  34. Woods, Y. L., Rena, G., Morrice, N., Barthel, A., Becker, W., Guo, S., et al. (2001). The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. The Biochemical Journal, 355(Pt 3), 597–607.

    PubMed  CAS  Google Scholar 

  35. Yang, J. Y., Zong, C. S., Xia, W., Yamaguchi, H., Ding, Q., Xie, X., et al. (2008). ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nature Cell Biology, 10(2), 138–148.

    Article  PubMed  CAS  Google Scholar 

  36. Hu, M. C., Lee, D. F., Xia, W., Golfman, L. S., Ou-Yang, F., Yang, J. Y., et al. (2004). IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell, 117(2), 225–237.

    Article  PubMed  CAS  Google Scholar 

  37. Greer, E. L., & Brunet, A. (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 24(50), 7410–7425.

    Article  PubMed  CAS  Google Scholar 

  38. Takaishi, H., Konishi, H., Matsuzaki, H., Ono, Y., Shirai, Y., Saito, N., et al. (1999). Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proceedings of the National Academy of Sciences of the United States of America, 96(21), 11836–11841.

    Article  PubMed  CAS  Google Scholar 

  39. Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J. V., et al. (2002). 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. The Journal of Cell Biology, 156(5), 817–828.

    Article  PubMed  CAS  Google Scholar 

  40. Rena, G., Prescott, A. R., Guo, S., Cohen, P., & Unterman, T. G. (2001). Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. The Biochemical Journal, 354(Pt 3), 605–612.

    Article  PubMed  CAS  Google Scholar 

  41. Brownawell, A. M., Kops, G. J., Macara, I. G., & Burgering, B. M. (2001). Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Molecular and Cellular Biology, 21(10), 3534–3546.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, M. C., Bohmann, D., & Jasper, H. (2005). JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell, 121(1), 115–125.

    Article  PubMed  CAS  Google Scholar 

  43. Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666), 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  44. Lehtinen, M. K., Yuan, Z., Boag, P. R., Yang, Y., Villen, J., Becker, E. B., et al. (2006). A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell, 125(5), 987–1001.

    Article  PubMed  CAS  Google Scholar 

  45. Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P., et al. (2007). The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. The Journal of Biological Chemistry, 282(41), 30107–30119.

    Article  PubMed  CAS  Google Scholar 

  46. Sunters, A., Madureira, P. A., Pomeranz, K. M., Aubert, M., Brosens, J. J., Cook, S. J., et al. (2006). Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Research, 66(1), 212–220.

    Article  PubMed  CAS  Google Scholar 

  47. Yang, J. Y., & Hung, M. C. (2009). A new fork for clinical application: targeting forkhead transcription factors in cancer. Clinical Cancer Research, 15(3), 752–757.

    Article  PubMed  CAS  Google Scholar 

  48. Jacobs, F. M., van der Heide, L. P., Wijchers, P. J., Burbach, J. P., Hoekman, M. F., & Smidt, M. P. (2003). FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. The Journal of Biological Chemistry, 278(38), 35959–35967.

    Article  PubMed  CAS  Google Scholar 

  49. van der Heide, L. P., Jacobs, F. M., Burbach, J. P., Hoekman, M. F., & Smidt, M. P. (2005). FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. The Biochemical Journal, 391(Pt 3), 623–629.

    PubMed  Google Scholar 

  50. Fukuoka, M., Daitoku, H., Hatta, M., Matsuzaki, H., Umemura, S., & Fukamizu, A. (2003). Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. International Journal of Molecular Medicine, 12(4), 503–508.

    PubMed  CAS  Google Scholar 

  51. van der Horst, A., Tertoolen, L. G., de Vries-Smits, L. M., Frye, R. A., Medema, R. H., & Burgering, B. M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). The Journal of Biological Chemistry, 279(28), 28873–28879.

    Article  PubMed  CAS  Google Scholar 

  52. Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., et al. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell, 116(4), 551–563.

    Article  PubMed  CAS  Google Scholar 

  53. Daitoku, H., Hatta, M., Matsuzaki, H., Aratani, S., Ohshima, T., Miyagishi, M., et al. (2004). Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10042–10047.

    Article  PubMed  CAS  Google Scholar 

  54. Yang, Y., Hou, H., Haller, E. M., Nicosia, S. V., & Bai, W. (2005). Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. The EMBO Journal, 24(5), 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  55. Frescas, D., Valenti, L., & Accili, D. (2005). Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. The Journal of Biological Chemistry, 280(21), 20589–20595.

    Article  PubMed  CAS  Google Scholar 

  56. Matsuzaki, H., Daitoku, H., Hatta, M., Aoyama, H., Yoshimochi, K., & Fukamizu, A. (2005). Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11278–11283.

    Article  PubMed  CAS  Google Scholar 

  57. van der Horst, A., & Burgering, B. M. (2007). Stressing the role of FoxO proteins in lifespan and disease. Nature Reviews. Molecular Cell Biology, 8(6), 440–450.

    Article  PubMed  CAS  Google Scholar 

  58. Matsuzaki, H., Daitoku, H., Hatta, M., Tanaka, K., & Fukamizu, A. (2003). Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11285–11290.

    Article  PubMed  CAS  Google Scholar 

  59. Plas, D. R., & Thompson, C. B. (2003). Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. The Journal of Biological Chemistry, 278(14), 12361–12366.

    Article  PubMed  CAS  Google Scholar 

  60. Huang, H., Regan, K. M., Wang, F., Wang, D., Smith, D. I., van Deursen, J. M., et al. (2005). Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1649–1654.

    Article  PubMed  CAS  Google Scholar 

  61. van der Horst, A., de Vries-Smits, A. M., Brenkman, A. B., van Triest, M. H., van den Broek, N., Colland, F., et al. (2006). FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biology, 8(10), 1064–1073.

    Article  PubMed  CAS  Google Scholar 

  62. Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology, 33(2), 437–449.

    Article  PubMed  CAS  Google Scholar 

  63. Klionsky, D. J., & Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science, 290(5497), 1717–1721.

    Article  PubMed  CAS  Google Scholar 

  64. Cuervo, A. M. (2004). Autophagy: in sickness and in health. Trends in Cell Biology, 14(2), 70–77.

    Article  PubMed  CAS  Google Scholar 

  65. Suzuki, K., & Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Letters, 581(11), 2156–2161.

    Article  PubMed  CAS  Google Scholar 

  66. Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42.

    Article  PubMed  CAS  Google Scholar 

  67. Vergne, I., Roberts, E., Elmaoued, R. A., Tosch, V., Delgado, M. A., Proikas-Cezanne, T., et al. (2009). Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. The EMBO Journal, 28(15), 2244–2258.

    Article  PubMed  CAS  Google Scholar 

  68. Mammucari, C., Milan, G., Romanello, V., Masiero, E., Rudolf, R., Del Piccolo, P., et al. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metabolism, 6(6), 458–471.

    Article  PubMed  CAS  Google Scholar 

  69. Sengupta, A., Molkentin, J. D., & Yutzey, K. E. (2009). FoxO transcription factors promote autophagy in cardiomyocytes. The Journal of Biological Chemistry, 284(41), 28319–28331.

    Article  PubMed  CAS  Google Scholar 

  70. Terman, A., Dalen, H., Eaton, J. W., Neuzil, J., & Brunk, U. T. (2003). Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Experimental Gerontology, 38(8), 863–876.

    Article  PubMed  CAS  Google Scholar 

  71. Lin, K., Dorman, J. B., Rodan, A., & Kenyon, C. (1997). daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science, 278(5341), 1319–1322.

    Article  PubMed  CAS  Google Scholar 

  72. Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., et al. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, 389(6654), 994–999.

    Article  PubMed  CAS  Google Scholar 

  73. Giannakou, M. E., Goss, M., Junger, M. A., Hafen, E., Leevers, S. J., & Partridge, L. (2004). Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science, 305(5682), 361.

    Article  PubMed  CAS  Google Scholar 

  74. Salih, D. A., & Brunet, A. (2008). FoxO transcription factors in the maintenance of cellular homeostasis during aging. Current Opinion in Cell Biology, 20(2), 126–136.

    Article  PubMed  CAS  Google Scholar 

  75. Simonsen, A., Cumming, R. C., Brech, A., Isakson, P., Schubert, D. R., & Finley, K. D. (2008). Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy, 4(2), 176–184.

    PubMed  CAS  Google Scholar 

  76. Salminen, A., & Kaarniranta, K. (2009). SIRT1: regulation of longevity via autophagy. Cellular Signalling, 21(9), 1356–1360.

    Article  PubMed  CAS  Google Scholar 

  77. Zhu, H., Tannous, P., Johnstone, J. L., Kong, Y., Shelton, J. M., Richardson, J. A., et al. (2007). Cardiac autophagy is a maladaptive response to hemodynamic stress. Journal of Clinical Investigation, 117(7), 1782–1793.

    Article  PubMed  CAS  Google Scholar 

  78. Decker, R. S., & Wildenthal, K. (1980). Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. American Journal of Pathology, 98(2), 425–444.

    PubMed  CAS  Google Scholar 

  79. Cao, D. J., Gillette, T. G., & Hill, J. A. (2009). Cardiomyocyte autophagy: remodeling, repairing, and reconstructing the heart. Current Hypertension Reports, 11(6), 406–411.

    Article  PubMed  Google Scholar 

  80. Hein, S., Arnon, E., Kostin, S., Schonburg, M., Elsasser, A., Polyakova, V., et al. (2003). Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation, 107(7), 984–991.

    Article  PubMed  Google Scholar 

  81. Kostin, S., Pool, L., Elsasser, A., Hein, S., Drexler, H. C., Arnon, E., et al. (2003). Myocytes die by multiple mechanisms in failing human hearts. Circulation Research, 92(7), 715–724.

    Article  PubMed  CAS  Google Scholar 

  82. Rothermel, B. A., & Hill, J. A. (2008). Autophagy in load-induced heart disease. Circulation Research, 103(12), 1363–1369.

    Article  PubMed  CAS  Google Scholar 

  83. Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Natural Medicines, 13(5), 619–624.

    Article  CAS  Google Scholar 

  84. He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics, 43, 67–93.

    Article  PubMed  CAS  Google Scholar 

  85. Ni, Y. G., Berenji, K., Wang, N., Oh, M., Sachan, N., Dey, A., et al. (2006). Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation, 114(11), 1159–1168.

    Article  PubMed  CAS  Google Scholar 

  86. Kong, D. K., Georgescu, S. P., Cano, C., Aronovitz, M. J., Iovanna, J. L., Patten, R. D., et al. (2010). Deficiency of the transcriptional regulator p8 results in increased autophagy and apoptosis, and causes impaired heart function. Molecular Biology of the Cell, 21(8), 1335-1349.

    Google Scholar 

Download references

Acknowledgements

We thank Drs. Sergio Lavandero and Thomas Gillette for critical reading of the manuscript.

Source of Funding

This work was supported by grants from the NIH (HL-075173; HL-080144; HL-090842), AHA (0640084N), ADA (7-08-MN-21-ADA), and the AHA-Jon Holden DeHaan Foundation (0970518N).

Conflicts of Interest Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferdous, A., Battiprolu, P.K., Ni, Y.G. et al. FoxO, Autophagy, and Cardiac Remodeling. J. of Cardiovasc. Trans. Res. 3, 355–364 (2010). https://doi.org/10.1007/s12265-010-9200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9200-z

Keywords

Navigation