Skip to main content
Log in

Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A local molybdenum-reducing bacterium was isolated and tentatively identified as Acinetobacter calcoaceticus strain Dr.Y12 based on carbon utilization profiles using Biolog GN plates and 16S rDNA comparative analysis. Molybdate reduction was optimized under conditions of low dissolved oxygen (37 °C and pH 6.5). Of the electron donors tested, glucose, fructose, maltose and sucrose supported molybdate reduction after 1 d of incubation, glucose and fructose supporting the highest Mo-blue production. Optimum Mo-blue production was reached at 20 mmol/L molybdate and 5 mmol/L phosphate; increasing the phosphate concentrations inhibited the production. An increase in an overall absorption profiles, especially at peak maximum at 865 nm and the shoulder at 700 nm, was observed in direct correlation with the increased in Mo-blue amounts. Metal ions, such as chromium, cadmium, copper, mercury and lead (2 mmol/L final concentration) caused ≈88, 53, 80, 100, and 20 % inhibition, respectively. Respiratory inhibitors, such as antimycin A, rotenone, sodium azide and cyanide showed in this bacterium no inhibition of the Mo-blue production, suggesting that the electron transport system is not a site of molybdate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appannaa V.D., Gazsó L.G., Pierre M.S.: Multiple-metal tolerance in Pseudomonas fluorescens and its biotechnological significance. J.Biotechnol.52, 75–80 (1996).

    Article  Google Scholar 

  • Ariff A.B., Rosfarizan M., Ghani B., Sugio T., Karim M.I.A.: Mo-reducing enzyme in Enterobacter cloacae strain 48. World J.Microbiol.Biotechnol.13, 643–647 (1997).

    Article  CAS  Google Scholar 

  • Barbe V., Vallenet D., Fonknechten N., Kreimeyer A., Oztas S., Labarre L., Cruveiller S., Robert C., Duprat S., Wincker P., Ornston L.N., Weissenbach J., Marlière P., Cohen G.N., Médigue C.: Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucl.Acids Res.32, 57–66 (2004).

    Article  CAS  Google Scholar 

  • Bautista E.M., Alexander M.: Reduction of inorganic compounds by soil microorganisms. Soil Sci.Soc.Am.Proc.36, 918–920 (1972).

    CAS  Google Scholar 

  • Bhide J.V., Dhakephalkar P.K., Paknikar K.M.: Microbiological process for the removal of Cr(VI) from chromate-bearing cooling tower effluent. Biotechnol.Lett.18, 1573–6776 (1996).

    Article  Google Scholar 

  • Campbell M.A., Campbell A.D., Villaret D.B.: Molybdate reduction by Eschericia coli K-12 and its chl mutants. Proc.Nat.Acad. Sci.USA82, 227–231 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Capaldi A., Proskauer B.: Beitrage zur Kenntnis der Siurebildung bei Typhusbacillen und Bacterium coli. Z.Hyg.Infektionskrankh.23, 452–474 (1896).

    Article  Google Scholar 

  • Davis G.K.: Molybdenum, pp. 1089–1100 in Ernest Merian (Ed.): Metals and Their Compounds in the Environment, Occurrence, Analysis and Biological Relevance. VCH Weinheim, New York 1991.

    Google Scholar 

  • Dawson R.M.C., Elliott D.C., Elliott W.H., Jones K.M. (Eds): Data for Biochemical Research. Clarendon Press, Oxford 1969.

    Google Scholar 

  • Ghanem I., Orfi M., Shamma M.: Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus. Folia Microbiol.52, 423–427 (2007).

    Article  CAS  Google Scholar 

  • Ghani B., Takai M., Hisham N.Z., Kishimito N., Ismail M.I.A., Tano T., Sugio T.: Isolation and characterization of a Mo6+-reducing bacterium. Appl.Environ.Microbiol.59, 1176–1180 (1993).

    CAS  PubMed  Google Scholar 

  • Glenn J.L., Crane F.L.: Studies on metalloflavoproteins — V. The action of silicomolybdate in the reduction of cytochrome c by aldehyde oxidase. Biochim.Biophys.Acta22, 111–115 (1956).

    Article  CAS  PubMed  Google Scholar 

  • Gvozdyak P.I., Mogilevich N.F., Rylskii A.F., Grishchenko N.M.: Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya55, 962–965 (1986).

    CAS  Google Scholar 

  • Hardoyo J.K., Ohtake H.: Effects of heavy metal cations on chromate reduction by Enterobacter cloacae strain HO1. J.Gen.Appl. Microbiol.37, 519–522 (1991).

    Article  CAS  Google Scholar 

  • Horitsu H., Nishida H., Kato H., Tomoyeda M.: Isolation of potassium chromate-tolerant bacterium and chromate uptakes by the bacterium. Agric.Biol.Chem.42, 2037–2043 (1978).

    CAS  Google Scholar 

  • Koósz Zs., Gazdag Z., Miklós I., Benkő Z., Belágyi J., Antal J., Meleg B., Pesti M.: Effects of decreased specific glutathione reductase activity in chromate-tolerant mutant of Schizosaccharomyces pombe. Folia Microbiol.53, 308–314 (2008).

    Article  CAS  Google Scholar 

  • Kujan P., Prell A., Safár H., Sobotka M., Rezanka T., Holler P.: Use of the industrial yeast Candida utilis for cadmium sorption. Folia Microbiol.51, 257–260 (2006).

    Article  CAS  Google Scholar 

  • Lee J.D.: Concise Inorganic Chemistry. Van Reinhold Co., New York 1977.

    Google Scholar 

  • Levine V.E.: The reducing properties of microorganisms with special reference to selenium compounds. J.Bacteriol.10, 217–263 (1925).

    CAS  PubMed  Google Scholar 

  • Lloyd J.R.: Microbial reduction of metals and radionuclides. FEMS Microbiol.Rev.27, 411–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Munch J.C., Ottow J.C.G.: Reductive transformation mechanism of ferric oxides in hydromorphic coils. Environ.Biogeochem.Ecol. Bull. (Stockholm)35, 383–394 (1983).

    Google Scholar 

  • Myers C.R., Carstens B.P., Antholine W.E., Myers J.M.: Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J.Appl.Microbiol.88, 98–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Neunhäuserer C., Berreck M., Insam H.: Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Poll.128, 85–96 (2001).

    Article  Google Scholar 

  • Phutane S.R., Renner J.N., Nelson S.L., Shames W.S., Páca J., Sundstrom T.J., Kozliak E.I.: Removal of 2,4-dinitrotoluene from concrete using bioremediation, agar extraction, and photocatalysis. Folia Microbiol.52, 253–260 (2007).

    Article  CAS  Google Scholar 

  • Rege M.A., Petersen J.N., Johnstone D.L., Turick C.E., Yoge D.R., Apel W.A.: Bacterial reduction of hexavalent chromium by Enterobacter cloacae strain HO1 grown on sucrose. Biotechnol.Lett.19, 691–694 (1997).

    Article  CAS  Google Scholar 

  • Shukor M.Y., Shamaan N.A., Syed M.A., Lee C.H., Karim M.I.A.: Characterization and quantification of Mo-blue production in Enterobacter cloacae strain 48 using 12-phosphomolybdate as the reference compound. Asia Pac.J.Mol.Biol.Biotechnol.8, 167–172 (2000).

    Google Scholar 

  • Shukor M.Y., Syed M.A., Lee C.H., Karim M.I.A., Shamaan N.A.: A method to distinguish between chemical and enzymatic reduction of molybdenum in Enterobacter cloacae strain 48. Malaysian J.Biochem.7, 71–72 (2002).

    CAS  Google Scholar 

  • Shukor M.Y., Lee C.H., Omar I., Karim M.I.A., Syed M.A., Shamaan N.A.: Isolation and characterization of a molybdenum-reducing enzyme in Enterobacter cloacae strain 48. Pertanika J.Sci.Technol.11, 261–272 (2003).

    Google Scholar 

  • Shukor M.Y., Baharom N.A., Rahman F.A., Abdullah M.P., Shamaan N.A., Syed M.A.: Development of a heavy metals enzymatic-based assay using papain. Anal.Chim.Acta566, 283–289 (2006).

    Article  CAS  Google Scholar 

  • Shukor M.Y., Adam H., Ithnin K., Yunus I., Shamaan N.A., Syed M.A.: Molybdate reduction to Mo-blue in microbe proceeds via a phosphomolybdate intermediate. J.Biol.Sci.7, 1448–1452 (2007).

    Article  CAS  Google Scholar 

  • Shukor M.Y., Habib S.H.M., Rahman M.F.A., Jirangon H., Abdullah M.P.A., Shamaan N.A., Syed M.A.: Hexavalent molybdenum reduction to Mo-blue by S. marcescens strain Dr.Y6. Appl.Biochem.Biotechnol.149, 33–43 (2008a).

    Article  CAS  PubMed  Google Scholar 

  • Shukor M.Y., Masdor N., Baharom N.A., Jamal J.A., Abdullah M.P.A., Shamaan N.A., Syed M.A.: An inhibitive determination method for heavy metals using bromelain, a cysteine protease. Appl.Biochem.Biotechnol.144, 283–291 (2008b).

    Article  CAS  PubMed  Google Scholar 

  • Shukor M.Y., Rahman M.F.A., Shamaan N.A., Lee C.H., Karim M.I.A., Syed M.A.: An improved enzyme assay for molybdenumreducing activity in bacteria. Appl.Biochem.Biotechnol.144, 293–300 (2008c).

    Article  CAS  PubMed  Google Scholar 

  • Shukor M.Y., Shamsuddin B., Mohamad O., Ithnin K., Shamaan N.A., Syed M.A.: A method to study the effects of chemical and biological reduction of molybdate to Mo-blue in bacteria. Pakistan J.Biol.Sci.11, 672–675 (2008d).

    Article  CAS  Google Scholar 

  • Sidgwick N.V.: The Chemical Elements and Their Compounds. Clarendon Press, Oxford 1984.

    Google Scholar 

  • Sinnakkannu S., Abdullah A.R., Tahir N.M., Abas M.R.: Degradation of metsulfuron methyl in selected Malaysian agricultural soils. Fresenius Environ.Bull.13, 258–261 (2004).

    CAS  Google Scholar 

  • Sugio T., Tsujita Y., Katagiri T., Inagaki K., Tano T.: Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans. J.Bacteriol.170, 5956–5959 (1988).

    CAS  PubMed  Google Scholar 

  • Suzuki T., Miyata N., Horitsu H., Kawai K., Takamizawa K., Tai Y., Okazaki M.: NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J.Bacteriol.174, 5340–5345 (1992).

    CAS  PubMed  Google Scholar 

  • Tóthová T., Pristaš P., Javorský P.: Mercuric reductase gene transfer from soil to rumen bacteria. Folia Microbiol.51, 317–319 (2006).

    Article  Google Scholar 

  • Tucker M.D., Barton L.L., Thomson B.M.: Reduction and immobilization of molybdenum by Desulfovibrio desulfuricans. J.Environ. Quality26, 1146–1152 (1997).

    Article  CAS  Google Scholar 

  • Underwood E.J.: Trace Elements in Human and Animal Nutrition, 4th ed. Academic Press, New York 1977.

    Google Scholar 

  • Yin C.Y., Shaaban M.G., Mahmud H.: Chemical stabilization of scrap metal yard contaminated soil using ordinary Portland cement: strength and leachability aspects. Build.Environ.42, 794–802 (2007).

    Article  Google Scholar 

  • Yong N.K., Oshima M., Blake R.C., Sugio T.: Isolation and some properties of an iron-oxidizing bacterium Thiobacillus ferrooxidans resistant to molybdenum ion. Biosci.Biotechnol.Biochem.61, 1523–1526 (1997).

    Article  CAS  Google Scholar 

  • Yong F.S.: Mamut Copper Mine — The Untold Story, at the National Seminar on the Malaysian Minerals Industry “Minerals: Underpinning Yesterday’s Needs, Today’s Development and Tomorrows’s Growth”. Pacific Sutera Hotel Kota Kinabalu, Sabah (Malaysia) 2000.

    Google Scholar 

  • Yoshimura K., Ishii M., Tarutani T.: Micro-determination of phosphate in water by gel-phase colorimetry with Mo-blue. Anal.Chem.58, 591–594 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Shukor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukor, M.Y., Rahman, M.F., Suhaili, Z. et al. Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus . Folia Microbiol 55, 137–143 (2010). https://doi.org/10.1007/s12223-010-0021-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0021-x

Keywords

Navigation