Skip to main content
Log in

Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs)

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin–proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431:873–8.

    Article  CAS  PubMed  Google Scholar 

  2. Cales C, Roman-Trufero M, Pavon L, Serrano I, Melgar T, Endoh M, et al. Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol Cell Biol. 2008;28:1018–28.

    Article  CAS  PubMed  Google Scholar 

  3. Kim JY, Sawada A, Tokimasa S, Endo H, Ozono K, Hara J, et al. Defective long-term repopulating ability in hematopoietic stem cells lacking the Polycomb-group gene rae28. Eur J Haematol. 2004;73:75–84.

    Article  CAS  PubMed  Google Scholar 

  4. Ohta H, Sawada A, Kim JY, Tokimasa S, Nishiguchi S, Humphries RK, et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med. 2002;195:759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    Article  CAS  PubMed  Google Scholar 

  6. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leeb M, Wutz A. Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J Cell Biol. 2007;178:219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.

    Article  CAS  PubMed  Google Scholar 

  9. Levine M, Hoey T. Homeobox proteins as sequence-specific transcription factors. Cell. 1988;55:537–40.

    Article  CAS  PubMed  Google Scholar 

  10. McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ. A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature. 1984;308:428–33.

    Article  CAS  PubMed  Google Scholar 

  11. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 1995;9:1753–65.

    Article  CAS  PubMed  Google Scholar 

  12. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood. 2002;99:121–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ohno Y, Yasunaga S, Janmohamed S, Ohtsubo M, Saeki K, Kurogi T, et al. Hoxa9 transduction induces hematopoietic stem and progenitor cell activity through direct down-regulation of geminin protein. PLoS One. 2013;8:e53161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohno Y, Yasunaga S, Ohtsubo M, Mori S, Tsumura M, Okada S, et al. Hoxb4 transduction down-regulates Geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential. Proc Natl Acad Sci USA. 2010;107:21529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohtsubo M, Yasunaga S, Ohno Y, Tsumura M, Okada S, Ishikawa N, et al. Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA. 2008;105:10396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yasunaga S, Ohtsubo M, Ohno Y, Saeki K, Kurogi T, Tanaka-Okamoto M, et al. Scmh1 has E3 ubiquitin ligase activity for geminin and histone H2A and regulates geminin stability directly or indirectly via transcriptional repression of Hoxa9 and Hoxb4. Mol Cell Biol. 2013;33:644–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blow JJ, Hodgson B. Replication licensing–defining the proliferative state? Trends Cell Biol. 2002;12:72–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL. Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev. 2005;19:1723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McGarry TJ, Kirschner MW. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 1998;93:1043–53.

    Article  CAS  PubMed  Google Scholar 

  20. Ohno Y, Suzuki-Takedachi K, Yasunaga S, Kurogi T, Santo M, Masuhiro Y, et al. Manipulation of cell cycle and chromatin configuration by means of cell-penetrating Geminin. PLoS One. 2016;11:e0155558.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kroll KL, Salic AN, Evans LM, Kirschner MW. Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development. 1998;125:3247–58.

    CAS  PubMed  Google Scholar 

  22. Tada S, Li A, Maiorano D, Mechali M, Blow JJ. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol. 2001;3:107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 2000;290:2309–12.

    Article  CAS  PubMed  Google Scholar 

  24. Lee C, Hong B, Choi JM, Kim Y, Watanabe S, Ishimi Y, et al. Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature. 2004;430:913–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lutzmann M, Maiorano D, Mechali M. A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J. 2006;25:5764–74.

    Article  CAS  PubMed  Google Scholar 

  26. Saxena SS, Monthoux P. Superconductivity: symmetry not required. Nature. 2004;427:799.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou B, Liu C, Xu Z, Zhu G. Structural basis for homeodomain recognition by the cell-cycle regulator Geminin. Proc Natl Acad Sci USA. 2012;109:8931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tabrizi GA, Bose K, Reimann Y, Kessel M. Geminin is required for the maintenance of pluripotency. PLoS One. 2013;8:e73826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang VS, Carter SA, Hyland SJ, Tachibana-Konwalski K, Laskey RA, Gonzalez MA. Geminin escapes degradation in G1 of mouse pluripotent cells and mediates the expression of Oct4, Sox2, and Nanog. Curr Biol. 2011;21:692–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo L, Yang X, Takihara Y, Knoetgen H, Kessel M. The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature. 2004;427:749–53.

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez MA, Tachibana KE, Adams DJ, van der Weyden L, Hemberger M, Coleman N, et al. Geminin is essential to prevent endoreduplication and to form pluripotent cells during mammalian development. Genes Dev. 2006;20:1880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hara K, Nakayama KI, Nakayama K. Geminin is essential for the development of preimplantation mouse embryos. Genes Cells. 2006;11:1281–93.

    Article  CAS  PubMed  Google Scholar 

  33. Karamitros D, Patmanidi AL, Kotantaki P, Potocnik AJ, Bahr-Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70–81.

    Article  CAS  PubMed  Google Scholar 

  34. Shinnick KM, Eklund EA, McGarry TJ. Geminin deletion from hematopoietic cells causes anemia and thrombocytosis in mice. J Clin Invest. 2010;120:4303–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ballabeni A, Melixetian M, Zamponi R, Masiero L, Marinoni F, Helin K. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. EMBO J. 2004;23:3122–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsunematsu T, Takihara Y, Ishimaru N, Pagano M, Takata T, Kudo Y. Aurora-A controls pre-replicative complex assembly and DNA replication by stabilizing geminin in mitosis. Nat Commun. 2013;4:1885.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Muchardt C, Yaniv M. When the SWI/SNF complex remodels…the cell cycle. Oncogene. 2001;20:3067–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology of Japan, the Naito foundation, the Life Science Foundation of Japan, the Takeda Science Foundation and the Radiation Effects Association. We would like to thank Ms. Hiromi Yamada for her secretarial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin’ichiro Yasunaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasunaga, S., Ohno, Y., Shirasu, N. et al. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs). Int J Hematol 104, 324–329 (2016). https://doi.org/10.1007/s12185-016-2060-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2060-9

Keywords

Navigation