Skip to main content

Advertisement

Log in

Updates in biological therapies for knee injuries: bone

  • Knee: Stem Cells (M Ferretti, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Bone is a unique tissue because of its mechanical properties, ability for self-repair, and enrollment in different metabolic processes such as calcium homeostasis and hematopoietic cell production. Bone barely tolerates deformation and tends to fail when overloaded. Fracture healing is a complex process that in particular cases is impaired. Osteoprogenitor cells proliferation, growth factors, and a sound tridimensional scaffold at fracture site are key elements for new bone formation and deposition. Mechanical stability and ample vascularity are also of great importance on providing a proper environment for bone healing. From mesenchymal stem cells delivery to custom-made synthetic scaffolds, many are the biological attempts to enhance bone healing. Impaired fracture healing represents a real burden to contemporary society. Sound basic science knowledge has contributed to newer approaches aimed to accelerate and improve the quality of bone healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Buckwalter JA, Glimcher MJ, Cooper RR, et al. Bone biology. Part I. Structure, blood supply, cells, matrix, and mineralization. J Bone Joint Surg. 1995;77A:1256–75.

    Google Scholar 

  2. Buckwalter JA, Glimcher MM, Cooper RR, et al. Bone biology. Part II. Formation form, modeling, and remodeling. J Bone Joint Surg. 1995;77A:1276–89.

    Google Scholar 

  3. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg (Br). 1978;60-B:150–62.

    CAS  Google Scholar 

  4. Lyritis GP. The history of the walls of the Acropolis of Athens and the natural history of secondary fracture healing process. J Musculoskelet Neuronal Interact. 2000;1:1–3.

    CAS  PubMed  Google Scholar 

  5. Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355(Suppl):S41–55.

    Article  PubMed  Google Scholar 

  6. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191–220.

    Article  CAS  PubMed  Google Scholar 

  7. Perren SM, Rahn BA. Biomechanics of fracture healing. Can J Surg. 1980;23:228–32.

    CAS  PubMed  Google Scholar 

  8. Schenk RK. Biology of fracture repair. In Browner B, Jupipter J, Levine L, Trafton P, editors. Skeletal Trauma 3rd Edition. Philadelphia: Saunders; 2003. p. 29–73. ISBN-13:978-0721691756.

  9. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38 Suppl 4:S3–6.

    Article  Google Scholar 

  10. Matter P. History of the AO and its global effect on operative fracture treatment. Clin Orthop Relat Res. 1998;347:11–8.

    Article  PubMed  Google Scholar 

  11. Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14:64–72.

    PubMed  Google Scholar 

  12. Marsell R, Einhorn TA. Emerging bone healing therapies. J Orthop Trauma. 2010;24 Suppl 1:S4–8. An overview on current therapies on bone healing is depicted in this article.

    Article  PubMed  Google Scholar 

  13. Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D. The diamond concept – open questions. Injury. 2008;39 Suppl 2:S5–8.

    Article  PubMed  Google Scholar 

  14. Hernigou P, Poignard A, Beaujean F, et al. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005;87:1430–7.

    Article  PubMed  Google Scholar 

  15. Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100–14.

    CAS  PubMed  Google Scholar 

  16. Jones E, Yang X. Mesenchymal stem cells and bone regeneration: current status. Injury. 2011;42:562–8. This article provides a comprehensive review on the use of mesenchymal stem cells in fracture repair.

    Article  PubMed  Google Scholar 

  17. Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci. 2010;10:12–27.

    Article  CAS  PubMed  Google Scholar 

  18. Tao J, Sun Y, Wang QG, Liu CW. Induced endothelial cells enhance osteogenesis and vascularization of mesenchymal stem cells. Cells Tissues Organs. 2009;190:185–193.

  19. Tortelli F, Tasso R, Loiacono F, Cancedda R. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials. 2010;31:242–9.

    Article  CAS  PubMed  Google Scholar 

  20. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.

    Article  CAS  PubMed  Google Scholar 

  21. Reddi AH. Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg Am. 2001;83-A Suppl 1:S1–6.

    PubMed  Google Scholar 

  22. Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 B.P. using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004;11:1312–20.

    Article  CAS  PubMed  Google Scholar 

  23. Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84:2123–34.

    Article  PubMed  Google Scholar 

  24. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83 Suppl 1:S151–8.

    PubMed  Google Scholar 

  25. Jones AL, Bucholz RW, Bosse MJ, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88:1431–41.

    Article  PubMed  Google Scholar 

  26. Ristiniemi J, Flinkkila T, Hyvonen P, et al. RhBMP-7 accelerates the healing in distal tibial fractures treated by external fixation. J Bone Joint Surg (Br). 2007;89:265–72.

    Article  CAS  Google Scholar 

  27. Nauth A, Ristiniemi J, McKee MD, et al. Bone morphogenetic proteins in open fractures: past, present, and future. Injury. 2009;40 Suppl 3:S27–31.

    Article  PubMed  Google Scholar 

  28. Gautschi OP, Frey SP, Zellweger R. Bone morphogenetic proteins in clinical applications. ANZ J Surg. 2007;77:626–31.

    Article  PubMed  Google Scholar 

  29. Chrastil J, Low JB, Whang PG, Patel AA. Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior interbody fusions of the lumbar spine. Spine. 2013;38:E1020–7.

    Article  PubMed  Google Scholar 

  30. Mroz TE, Wang JC, Hashimoto R, Norvell DC. Complications related to osteobiologics use in spine surgery: a systematic review. Spine. 2010;35(9 Suppl):S86–104.

    Article  PubMed  Google Scholar 

  31. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neo- vascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999;18:3964–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Keramaris NC, Calori GM, Nikolaou VS, et al. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury. 2008;39 Suppl 2:S45–57.

    Article  PubMed  Google Scholar 

  33. Kumar S, Wan C, Ramaswamy G, et al. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther. 2010;18:1026–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nauth A, Giannoudis PV, Einhorn TA, Hankenson KD, Friedlaender GE, Li R, et al. Growth factors: beyond bone morphogenetic proteins. J Orthop Trauma. 2010;24:543–6.

    Article  PubMed  Google Scholar 

  35. Hollinger JO, Hart CE, Hirsch SN, et al. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am. 2008;90 Suppl 1:48–54.

    Article  PubMed  Google Scholar 

  36. Graham S, Leonidou A, Lester M, et al. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin Investig Drugs. 2009;18:1633–54.

    Article  CAS  PubMed  Google Scholar 

  37. Alsousou J, Thompson M, Hulley P, et al. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg (Br). 2009;91:987–96.

    Article  CAS  Google Scholar 

  38. Calori GM, Tagliabue L, Gala L, d’Imporzano M, Peretti G, Albisetti W. Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions: a prospective randomised clinical study on 120 patients. Injury. 2008;39:1391–402.

    Article  CAS  PubMed  Google Scholar 

  39. Dallari D, Savarino L, Stagni C, Cenni E, Cenacchi A, Fornasari PM, et al. Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am. 2007;89:2413–20.

    Article  CAS  PubMed  Google Scholar 

  40. Griffin XL, Smith CM, Costa ML. The clinical use of platelet-rich plasma in the promotion of bone healing: a systematic review. Injury. 2009;40:158–62.

    Article  CAS  PubMed  Google Scholar 

  41. Sheth U, Simunovic N, Klein G, Fu F, Einhorn TA, Schemitsch E, et al. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am. 2012;94:298–307.

    Article  PubMed  Google Scholar 

  42. Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H. Scaffolds for bone healing: Concepts, materials and evidence. Injury. 2011;42:569–73. Scaffolds are osteoconductive bases for bone regeneration. This article brings an overview on current strategies for developing new scaffolds for bone healing.

    Article  CAS  PubMed  Google Scholar 

  43. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012;64:1063–77. This is a detailed review on the use of Demineralized bone matrix in bone repair.

    Article  CAS  PubMed  Google Scholar 

  44. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am. 2004;86A:2243–50.

    Google Scholar 

  45. Wang JC, Alanay A, Mark D, Kanim LEA, Campbell PA, Dawson EG, et al. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J. 2007;16:1233–40.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Acarturk TO, Hollinger JO. Commercially available demineralized bone matrix compositions to regenerate calvarial critical-sized bone defects. Plast Reconstr Surg. 2006;118:862–73.

    Article  CAS  PubMed  Google Scholar 

  47. Kuhne JH, Bartl R, Frisch B, et al. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand. 1994;65:246–52.

    Article  CAS  PubMed  Google Scholar 

  48. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  PubMed  Google Scholar 

  49. Laschke MW, Strohe A, Menger MD, Alini M, Eglin D. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomater. 2010;6:2020–7.

    Article  CAS  PubMed  Google Scholar 

  50. Dupont KM, Sharma K, Stevens HY, et al. Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci U S A. 2010;107:3305–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Evans C. Gene therapy for bone regeneration. Injury. 2011;42:599–604. This article focuses on principles of gene therapy for bone regeneration.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kimelman N, Pelled G, Gazit Z, Gazit D. Applications of gene therapy and adult stem cells in bone bioengineering. Regen Med. 2006;1:549–61.

    Article  CAS  PubMed  Google Scholar 

  53. Bukata S. Systemic administration of pharmacological agents and bone repair: What can we expect. Injury. 2011;42:605–8. This is an extensive review on the use of systemic pharmacologic agents in bone repair.

    Article  PubMed  Google Scholar 

  54. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  55. Alkhiary YM, Gerstenfeld LC, Krall E, et al. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1–34). J Bone Joint Surg Am. 2005;87:731–41.

    Article  PubMed  Google Scholar 

  56. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25:404–14. This article depicts the mechanism of action and clinical applications of Teriparatide.

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Mori S, Kaji Y, et al. Effect of bisphosphonate (incadronate) in callus area and its effect on fracture healing in rats. J Bone Miner Res. 2000;15:2042–51.

    Article  CAS  PubMed  Google Scholar 

  58. Mc Donald MM, Dulai S, Godfrey C, et al. Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone. 2008;43:653–62.

    Article  CAS  Google Scholar 

  59. Ozturan KE, Demir B, Yucel I, Cakici H, Yilmaz F, Haberal A. Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res. 2011;29:138–42.

    Article  CAS  PubMed  Google Scholar 

  60. Li YF, Luo E, Feng G, Zhu SS, Li JH, Hu J. Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int. 2010;21:1889–97.

    Article  CAS  PubMed  Google Scholar 

  61. Komatsu DE, Mary MN, Schroeder RJ, et al. Modulation of Wnt signaling influences fracture repair. J Orthop Res. 2010;28:928–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39:754–66.

    Article  CAS  PubMed  Google Scholar 

  63. Li X, Ominsky MS, Warnington KS, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24:578–88.

    Article  CAS  PubMed  Google Scholar 

  64. Nelson FR, Brighton CT, Ryaby J, Simon BJ, Nielson JH, Lorich DG, et al. Use of physical forces in bone healing. J Am Acad Orthop Surg. 2003;11:344–54.

    PubMed  Google Scholar 

  65. Pounder NM, Harrison AJ. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics. 2008;48:330–8.

    Article  CAS  PubMed  Google Scholar 

  66. Griffin XL, Costello I, Costa ML. The role of low intensity pulsed ultrasound therapy in the management of acute fractures: a systematic review. J Trauma. 2008;65:1446–52.

    Article  PubMed  Google Scholar 

  67. Fukada E, Yasuda I. On the piezoelectric effect of bone. J Phys Soc Japan. 1957;12:1158–69.

    Article  Google Scholar 

  68. Mollon B, da Silva V, Busse JW, Einhorn TA, Bhandari M. Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2008;90:2322–30.

    Article  PubMed  Google Scholar 

  69. Keating JF, Hajducka CL, Harper J. Minimal internal fixation and calcium- phosphate cement in the treatment of fractures of the tibial plateau. A pilot study. J Bone Joint Surg (Br). 2003;85:68–73.

    Article  CAS  Google Scholar 

  70. Russell TA, Leighton RK. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am. 2008;90:2057–61.

    Article  PubMed  Google Scholar 

  71. Goff T, Kanakaris NK, Giannoudis PV. Use of bone graft substitutes in the management of tibial plateau fractures. Injury. 2013;44 Suppl 1:S86–94. This is an interesting review on the use of bone substitutes in the management of tibial plateau fractures.

    Article  PubMed  Google Scholar 

  72. Aryee S, Imhoff AB, Rose T, Tischer T. Do we need synthetic osteotomy augmentation materials for opening-wedge high tibial osteotomy. Biomaterials. 2008;29:3497–502.

    Article  CAS  PubMed  Google Scholar 

  73. Nathan ST, Fisher BE, Roberts CS, Giannoudis PV. The management of nonunion and delayed union of patella fractures: a systematic review of the literature. Int Orthop. 2011;35:791–5.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Cox G, Jones E, Mcgonagle D, Giannoudis PV. Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop. 2011;35:951–6. This article reviews the clinical applications of reamer-irrigator-aspirator as a source of bone autograft in fracture repair.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Gross AE, Shasha N, Aubin P. Long-term follow-up of the use of fresh osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res. 2005;435:79–87.

    Article  PubMed  Google Scholar 

  76. Williams III RJ, Ranawat AS, Potter HG, Carter T, Warren RF. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am. 2007;89:718–26.

    Article  PubMed  Google Scholar 

  77. Ghazavi MT, Pritzker KP, Davis AM, Gross AE. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg (Br). 1997;79:1008–13.

    Article  CAS  Google Scholar 

  78. Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg. 2014;22:121–33. This is a current concepts article on the use of fresh osteochondral allografts for the knee.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

M. Kfuri Jr, R. Lara de Freitas, B. B. Batista, R. Salim, M. T. Castiglia, R. A. Tavares, and P. H. Araújo declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Kfuri Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kfuri, M., de Freitas, R.L., Batista, B.B. et al. Updates in biological therapies for knee injuries: bone. Curr Rev Musculoskelet Med 7, 220–227 (2014). https://doi.org/10.1007/s12178-014-9225-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-014-9225-z

Keywords

Navigation