Skip to main content
Log in

Chemical standards for ion mobility spectrometry: a review

  • Review
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Ion mobility spectrometry (IMS), using stand-alone instrumentation and hyphenated with mass spectrometry (IM-MS), has recently undergone significant expansion in the numbers of users and applications, particularly in sectors outside its established user base; predominantly military and security applications. Although several IMS reference standards have been proposed, there are no currently universally recognised reference standards for the calibration and evaluation of mobility spectrometers. This review describes current practices and the literature on chemical standards for validating IMS systems in positive and negative ion modes. The key qualities and requirements an ‘ideal’ reference standard must possess are defined, together with the instrumental and environmental factors such as temperature, electric field, humidity and drift gas composition that may need to be considered. Important challenges that have yet to be resolved are also identified and proposals for future development presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129(11):984–994

    Article  CAS  Google Scholar 

  2. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41(4):323–375

    Article  CAS  Google Scholar 

  3. Hill HH, Siems WF, Stlouis RH, Mcminn DG (1990) Ion mobility spectrometry. Anal Chem 62(23):A1201–A1209

    Article  Google Scholar 

  4. McLean JA, Ruotolo BT, Gillig KJ, Russell DH (2005) Ion mobility-mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240(3):301–315

    Article  CAS  Google Scholar 

  5. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22

    Article  CAS  Google Scholar 

  6. Eiceman GA, Nazarov EG, Stone JA (2003) Chemical standards in ion mobility spectrometry. Anal Chim Acta 493(2):185–194

    Article  CAS  Google Scholar 

  7. Fytche LM, Hupe M, Kovar JB, Pilon P (1992) Ion mobility spectrometry of drugs of abuse in customs scenarios—concentration and temperature study. J Forensic Sciences 37(6):1550–1566

    CAS  Google Scholar 

  8. United States Environmental Protection Agency, Office of Research and Development, and N.H.S.R. Centre (2003) Ion mobility spectrometer test/QA plan: verification of portable ion mobility spectrometers for detection of chemicals and chemical agents in buildings

  9. Miller RA, Nazarov EG, Zapata A, Davis CE, Eiceman GA, Bashall AD (2007) US Patent 7057168 systems for differential ion mobility analysis. S. Corporation, United States

    Google Scholar 

  10. Weston DJ, Bateman R, Wilson ID, Wood TR, Creaser CS (2005) Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal Chem 77(23):7572–80

    Article  CAS  Google Scholar 

  11. Tabrizchi M (2001) Temperature corrections for ion mobility spectrometry. Appl Spectrosc 55(12):1653–1659

    Article  CAS  Google Scholar 

  12. Vautz W, Michels A, Franzke J (2008) Micro-plasma: a novel ionisation source for ion mobility spectrometry. Anal Bioanal Chem 391(7):2609–2615

    Article  CAS  Google Scholar 

  13. Kebarle P, Searles SK, Zolla A, Scarborough J, Arshadi M (1967) Solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of individual reactions. H+(H2O)n-1 + H2O .fwdarw. H+(H2O)n. J Am Chem Soc 89(25):6393–6399

    Article  CAS  Google Scholar 

  14. Karpas Z (1989) Ion mobility spectrometry of aliphatic and aromatic-amines. Anal Chem 61(7):684–689

    Article  CAS  Google Scholar 

  15. Shumate C, Stlouis RH, Hill HH (1986) Table of reduced mobility values from ambient pressure ion mobility spectrometry. J Chromatogr 373(2):141–173

    Article  CAS  Google Scholar 

  16. Snyder AP, Maswadeh WM, Eiceman GA, Wang YF, Bell SE (1995) Multivariate statistical-analysis characterization of application-based ion mobility spectra. Anal Chim Acta 316(1):1–14

    Article  CAS  Google Scholar 

  17. Lubman DM, Kronick MN (1983) Multiwavelength-selective ionization of organic-compounds in an ion mobility spectrometer. Anal Chem 55(6):867–873

    Article  CAS  Google Scholar 

  18. Rearden P, Harrington PB (2005) Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME-IMS). Anal Chim Acta 545(1):13–20

    Article  CAS  Google Scholar 

  19. Bramwell CJ, Colgrave ML, Creaser CS, Dennis R (2002) Development and evaluation of a nano-electrospray ionisation source for atmospheric pressure ion mobility spectrometry. Analyst 127(11):1467–70

    Article  CAS  Google Scholar 

  20. Bramwell CJ, Creaser CS, Reynolds JC, Dennis R (2002) Atmospheric pressure matrix-assisted laser desorption/ionization combined with ion mobility spectrometry. Int J Ion Mobil Spectrom 5:87–90

    CAS  Google Scholar 

  21. Lubman DM (1984) Temperature-dependence of plasma chromatography of aromatic-hydrocarbons. Anal Chem 56(8):1298–1302

    Article  CAS  Google Scholar 

  22. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. CRC, Cleveland

    Google Scholar 

  23. Thomas CLP, Rezgui ND, Kanu AB, Munro WA (2002) Measuring the temperature of the drift gas in an ion mobility spectrometer: a technical note. Int J Ion Mobil Spectrom 5(1):31–36

    Google Scholar 

  24. Kanu AB, Hill HH (2007) Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73(4):692–699

    Article  CAS  Google Scholar 

  25. Tadjimukhamedov FA, Stone JA, Papanastasiou D, Rodriguez JE, Mueller W, Sukumar H, Eiceman GA (2008) Liquid chromatography/electrospray ionization/ion mobility spectrometry of chlorophenols with full flow from large bore LC columns. Int J Ion Mobil Spectrom . doi:10.1007/s12127-008-0004-7

    Google Scholar 

  26. Pedersen CS, Lauritsen FR, Sysoev A, Viitanen AK, Mäkelä JM, Adamov A, Laakia J, Mauriala T, Kotiaho T (2008) Characterization of proton-bound acetate dimers in ion mobility spectrometry. J Am Soc Mass Spectrom 19(9):1361

    Article  CAS  Google Scholar 

  27. Hill CA, Thomas CLP (2005) Programmable gate delayed ion mobility spectrometry-mass spectrometry: a study with low concentrations of dipropylene-glycol-monomethyl-ether in air. Analyst 130(8):1155–1161

    Article  CAS  Google Scholar 

  28. Eiceman GA, Kelly K, Nazarov EG (2002) Nitric oxide as a reagent gas in ion mobility spectrometry. Int J Ion Mobil Spectrom 5:22–30

    CAS  Google Scholar 

  29. Laakia J Adamov A, Jussila M, Pedersen CS, Sysoev A, Kotiaho T (2008) Observation of different ion structures in ion mobility spectrometer with photoionization (APPI). The 17th Int Annual Conference on Ion Mobil Spectrom. Ottawa, Canada

  30. Viitanen AK, Mauriala T, Mattila T, Adamov A, Pedersen CS, Makela JM, Marjamaki M, Sysoev A, Keskinen J, Kotiaho T (2008) Adjusting mobility scales of ion mobility spectrometers using 2, 6-DtBP as a reference compound. Talanta 76(5):1218–1223

    Article  CAS  Google Scholar 

  31. Viitanen AK, Mauriala T, Mattila T, Adamov A, Pedersen CS, Makela JM, Marjamaki M, Sysoev A, Keskinen J, Kotiaho T (2008) Mobility scale adjustment using DtBP. The 17th Int Annual Conference on Ion Mobil Spectrom. Ottawa, Canada

  32. Viidanoja J, Sysoev A, Adamov A, Kotiaho T (2005) Tetraalkylammonium halides as chemical standards for positive electrospray ionization with ion mobility spectrometry/mass spectrometry. Rapid Commun Mass Spectrom 19(21):3051–5

    Article  CAS  Google Scholar 

  33. Ude S, De la Mora JF (2005) Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J Aerosol Sci 36(10):1224–1237

    Article  CAS  Google Scholar 

  34. Bota GM, Harrington PB (2006) Direct detection of trimethylamine in meat food products using ion mobility spectrometry. Talanta 68(3):629–635

    Article  CAS  Google Scholar 

  35. Jackson RA (1998) US Patent 5796099 pressure based calibration correction of an ion mobility spectrometer. Barringer Instruments Ltd, United States

    Google Scholar 

  36. Patchett ML, Minoshima Y, Harrington PB (2002) Detection of gamma-hydroxybutyrate and gamma-butyrolactone by ion mobility spectrometry. Spectrosc 17(11):16–24

    CAS  Google Scholar 

  37. Danylewych-May L, Kuja F (2001) US Patent 6291821—Method of monitoring the status of the gas drying system in an ion mobility spectrometer. Barringer Research Limited

  38. Vinopal RT, Jadamec JR, deFur P, Demars AL, Jakubielski S, Green C, Anderson CP, Dugas JE, DeBono RF (2002) Fingerprinting bacterial strains using ion mobility spectrometry. Anal Chim Acta 457(1):83–95

    Article  CAS  Google Scholar 

  39. Wang YS, Nacson S, Pawliszyn J (2007) The coupling of solid-phase microextraction/surface enhanced laser desorption/ionization to ion mobility spectrometry for drug analysis. Anal Chim Acta 582(1):50–54

    Article  CAS  Google Scholar 

  40. Miki A, Keller T, Regenscheit P, Dirnhofer R, Tatsuno M, Katagi M, Nishikawa M, Tsuchihashi H (1997) Application of ion mobility spectrometry to the rapid screening of methamphetamine incorporated in hair. J Chromatogra B 692(2):319–328

    Article  Google Scholar 

  41. Keller T, Keller A, Tutsch-Bauer E, Monticelli F (2006) Application of ion mobility spectrometry in cases of forensic interest. Forensic Sci Int 161(2–3):130–140

    Article  CAS  Google Scholar 

  42. Keller T, Miki A, Regenscheit P, Dirnhofer R, Schneider A, Tsuchihashi H (1998) Detection of designer drugs in human hair by ion mobility spectrometry (IMS). Forensic Sci Int 94(1–2):55–63

    Article  CAS  Google Scholar 

  43. Budde KJ, Holzapfel WJ, Beyer MM (1993) Test method for the determination of organic contamination from minienvironments using Ion Mobility Spectrometry (IMS). Semiconductor Equipment and Materials International (SEMI) Documents E46-0301, 2238 & 0307

  44. Buxton TL, Harrington PB (2001) Rapid multivariate curve resolution applied to identification of explosives by ion mobility spectrometry. Anal Chim Acta 434(2):269–282

    Article  CAS  Google Scholar 

  45. Verkouteren M, Windsor E, Fletcher R, Maditz R, Smith W, Gillen G (2006) Inkjet metrology and standards for ion mobility spectrometry. Int J Ion Mobil Spectrom 9(1):19–23

    CAS  Google Scholar 

  46. Fetterolf DD, Clark TD (1993) Detection of trace explosive evidence by ion mobility spectrometry. J Forensic Sci 38(1):28–39

    CAS  Google Scholar 

  47. West C, Baron G, Minet JJ (2007) Detection of gunpowder stabilizers with ion mobility spectrometry. Forensic Sci Int 166(2–3):91–101

    Article  CAS  Google Scholar 

  48. Buryakov IA (2003) Qualitative analysis of trace constituents by ion mobility increment spectrometer. Talanta 61(3):369–375

    Article  CAS  Google Scholar 

  49. Buryakov IA, Kolomiets YN (2003) Rapid determination of explosives and narcotics using a multicapillary-column gas chromatograph and an ion-mobility spectrometer. J Anal Chem 58(10):944–950

    Article  CAS  Google Scholar 

  50. National institute of standards and technology (2008) http://www.nist.gov/

  51. Verkouteren RM, Gillen G (2006) Piezoelectrc trace vapor calibrator. Rev Scientific Instrum 77:085104

    Article  Google Scholar 

  52. Eiceman GA, Zhou Q, Nazarov EG (2001) Kinetic processes that govern the appearance mobility spectra: can we ever make refined comparisons of mobility spectra? Int J Ion Mob Spectrom 4(2):9–12

    Google Scholar 

  53. Ewing RG, Eiceman GA, Stone JA (1999) Proton-bound cluster ions in ion mobility spectrometry. Int J Mass Spectrom 193(1):57–68

    Article  CAS  Google Scholar 

  54. Budimir N, Weston DJ, Creaser CS (2007) Analysis of pharmaceutical formulations using atmospheric pressure ion mobility spectrometry combined with liquid chromatography and nano-electrospray ionisation. Analyst 132(1):34–40

    Article  CAS  Google Scholar 

  55. Wu C, Hill HH, Gamerdinger AP (1998) Electrospray ionization ion mobility spectrometry as a field monitoring method for the detection of atrazine in natural water. Field Anal Chem Technol 2(3):155–161

    Article  CAS  Google Scholar 

  56. Fraga CG, Melville AM, Wright BW (2007) ROC-curve approach for determining the detection limit of a field chemical sensor. Analyst 132:230–236

    Article  CAS  Google Scholar 

  57. Henderson SC, Valentine SJ, Counterman AE, Clemmer DE (1999) ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal Chem 71(2):291–301

    Article  CAS  Google Scholar 

  58. Kaur-Atwal G, Weston DJ, Green PS, Crosland S, Bonner PLR, Creaser CS (2007) Analysis of tryptic peptides using desorption electrospray ionisation combined with ion mobility spectrometry/mass spectrometry. Rapid Commun Mass Spectrom 21(7):1131–1138

    Article  CAS  Google Scholar 

  59. Valentine SJ, Counterman AE, Hoaglund CS, Reilly JP, Clemmer DE (1998) Gas-phase separations of protease digests. J Am Soc Mass Spectrom 9(11):1213–6

    Article  CAS  Google Scholar 

  60. Wyttenbach T, VonHelden G, Bowers MT (1996) Gas-phase conformation of biological molecules: Bradykinin. J Am Chem Soc 118(35):8355–8364

    Article  CAS  Google Scholar 

  61. Ruotolo BT, McLean JA, Gillig KJ, Russell DH (2005) The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry. J Am Soc Mass Spectrom 16(2):158–165

    Article  CAS  Google Scholar 

  62. Ruotolo BT, Tate CC, Russell DH (2004) Ion mobility-mass spectrometry applied to cyclic peptide analysis: conformational preferences of gramicidin S and linear analogs in the gas phase. J Am Soc Mass Spectrom 15(6):870–8

    Article  CAS  Google Scholar 

  63. Hill HH, Hill CH, Asbury GR, Wu C, Matz LM, Ichiye T (2002) Charge location on gas phase peptides. Int J Mass Spectrom 219(1):23–37

    Article  CAS  Google Scholar 

  64. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261(1):1–12

    Article  CAS  Google Scholar 

  65. Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogra A 1058(1–2):3–19

    CAS  Google Scholar 

  66. Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry (FAIMS). Canadian J Anal Sciences and Spectrosc 49(3):105–113

    CAS  Google Scholar 

  67. Viehland LA, Guevremont R, Purves RW, Barnett DA (2000) Comparison of high-field ion mobility obtained from drift tubes and a FAIMS apparatus. Int J Mass Spectrom 197:123–130

    Article  CAS  Google Scholar 

  68. Smith DP, Giles K, Bateman RH, Radford S, Ashcroft AE (2007) Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J Am Soc Mass Spectrom 18(12):2180–2190

    Article  CAS  Google Scholar 

  69. Valentine SJ, Counterman AE, Clemmer DE (1999) A database of 660 peptide ion cross sections: use of intrinsic size parameters for bona fide predictions of cross sections. J Am Soc Mass Spectrom 10(11):1188–1211

    Article  CAS  Google Scholar 

  70. Clemmer DE. Cross section database (2006) Available from: http://www.indiana.edu/~clemmer/Research/cross%20section%20database/cs%20database.htm. Indiana University, Bloomington

  71. Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF (1997) Protein structure in vacuo: gas-phase confirmations of BPTI and cytochrome c. J Am Chemical Soc 119(9):2240–2248

    Article  CAS  Google Scholar 

  72. Thalassinos K, Slade SE, Jennings KR, Scrivens JH, Giles K, Wildgoose J, Hoyes J, Bateman RH, Bowers MT (2004) Ion mobility mass spectrometry of proteins in a modified commercial mass spectrometer. Int J Mass Spectrom 236(1–3):55–63

    CAS  Google Scholar 

  73. Williams JP, Scrivens JH (2008) Coupling desorption electrospray ionisation and neutral desorption/extractive electrospray ionisation with a travelling-wave based ion mobility mass spectrometer for the analysis of drugs. Rapid Commun Mass Spectrom 22(2):187–96

    Article  CAS  Google Scholar 

  74. Purves RW, Barnett DA, Guevremont R (2000) Separation of protein conformers using electrospray-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Int J Mass Spectrom 197(1–3):163–177

    CAS  Google Scholar 

  75. Koeniger SL, Clemmer DE (2007) Resolution and structural transitions of elongated states of ubiquitin. J Am Soc Mass Spectrom 18(2):322–31

    Article  CAS  Google Scholar 

  76. Purves RW, Barnett DA, Ells B, Guevremont R (2000) Investigation of bovine ubiquitin conformers separated by high-field asymmetric waveform ion mobility spectrometry: cross section measurements using energy-loss experiments with a triple quadrupole mass spectrometer. J Am Soc Mass Spectrom 11(8):738–745

    Article  CAS  Google Scholar 

  77. Wyttenbach T, VonHelden G, Batka JJ, Carlat D, Bowers MT (1997) Effect of the long-range potential on ion mobility measurements. J Am Soc for Mass Spectrom 8(3):275–282

    Article  CAS  Google Scholar 

  78. Ruotolo BT, Gillig KJ, Stone EG, Russell DH, Fuhrer K, Gonin M, Schultz JA (2002) Analysis of protein mixtures by matrix-assisted laser desorption ionization-ion mobility-orthogonal-time-of-flight mass spectrometry. Int J Mass Spectrom 219(1):253–267

    Article  CAS  Google Scholar 

  79. Woods AS, Koomen JM, Ruotolo BT, Gillig KJ, Russel DH, Fuhrer K, Gonin M, Egan TF, Schultz JA (2002) A study of peptide-peptide interactions using MALDI ion mobility o-TOF and ESI mass spectrometry. J Am Soc Mass Spectrom 13(2):166–169

    Article  CAS  Google Scholar 

  80. Sysoev A, Adamov A, Viidanoja J, Ketola RA, Kostiainen R, Kotiaho T (2004) Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis. Rapid Commun Mass Spectrom 18(24):3131–9

    Article  CAS  Google Scholar 

  81. Matz LM, Hill HH Jr, Beegle LW, Kanik I (2002) Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection. J Am Soc Mass Spectrom 13(4):300–7

    Article  CAS  Google Scholar 

  82. Baumbach JI, Davies AN, Lampen P, Schmidt H (2001) JCAMP-DX. a standard format for the exchange of ion mobility spectrometry data - (IUPAC recommendations 2001). Pure and Appl Chem 73(11):1765–1782

    Article  CAS  Google Scholar 

  83. Baumbach JI, Lampen P, Davies AN (1998) IUPAC / JCAMP-DX: an international standard for the exchange of ion mobility spectrometry data. Int J Ion Mobil Spectrom 1:64–67

    CAS  Google Scholar 

  84. IUPAC (1997–2007) Committee on printed and electronic publications subcommittee on electronic data standards (JCAMP-DX) Available from: http://www.jcamp-dx.org/

  85. Institute for Analytical Sciences, Dortmund (2008) Available from: http://www.isas.de/english/menu-top/research/research-departments/jcamp-dx-utilities/

  86. Valentine SJ, Counterman AE, Clemmer DE (1997) Conformer-dependent proton-transfer reactions of ubiquitin ions. J Am Soc Mass Spectrom 8(9):954–961

    Article  CAS  Google Scholar 

  87. Russell DH (2006). Russell Research Group (RRG) website, Texas A&M University. Cross section database and reduced mobilities of proteolytic peptides. http://www.chem.tamu.edu/rgroup/russell/cross_section_database.pdf

  88. Tao L, McLean JR, McLean JA, Russell DH (2007) A collision cross-section database of singly-charged peptide ions. J Am Soc Mass Spectrom 18(7):1232–1238

    Article  CAS  Google Scholar 

  89. Li J, Taraszka JA, Counterman AE, Clemmer DE (1999) Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions. Int J Mass Spectrom 185–187:37–47

    Google Scholar 

  90. Bowers MT Bowers group website, University of California, Santa Barbara, Theoretical collision cross sections: the Sigma program. Available from: http://bowers.chem.ucsb.edu/theory_analysis/cross-sections/sigma.shtml

  91. Vonhelden G, Hsu MT, Gotts N, Bowers MT (1993) Carbon cluster cations with up to 84 atoms—structures, formation mechanism, and reactivity. J Phys Chem 97(31):8182–8192

    Article  CAS  Google Scholar 

  92. Shvartsburg AA, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Letts 261(1–2):86–91

    Article  CAS  Google Scholar 

  93. Jarrold MF (2006) Indiana University. Theoretical cross sections: Mobcal software. Available from: http://www.indiana.edu/~nano/Software.html

  94. National Measurement System Chemical and Biological Metrology Website (Project O1) (2009) Available from: http://www.nmschembio.org.uk/GenericArticle.aspx?m=24&amid=250

  95. Aguilera-Herrador E, Cárdenas S, Ruzsanyi V, Sielemann S, Valcárcel M (2008) Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast gas chromatography multicapillary columns. J Chromatogr A 1214(1–2):143–150

    Article  CAS  Google Scholar 

  96. Bocos-Bintintan V, Brittain A, Thomas CLP (2002) Characterisation of the phosgene response of a membrane inlet 63Ni ion mobility spectrometer. Analyst 127(9):1211–1217

    Article  CAS  Google Scholar 

  97. Purves RW, Barnett DA, Ells B, Guevremont R (2001) Elongated conformers of charge states +11 to +15 of bovine ubiquitin studied using ESI-FAIMS-MS. J Am Soc Mass Spectrom 12(8):894–901

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported under contract with the UK Department for Innovation, Universities and Skills as part of the National Measurement System Chemical and Biological Metrology programme. We thank Jim Kapron from ThermoFinnigan and Reno DeBono from Smiths Detection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin S. Creaser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur-Atwal, G., O’Connor, G., Aksenov, A.A. et al. Chemical standards for ion mobility spectrometry: a review. Int. J. Ion Mobil. Spec. 12, 1–14 (2009). https://doi.org/10.1007/s12127-009-0021-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-009-0021-1

Keywords

Navigation