Skip to main content
Log in

Application of the \((G^{\prime}\)/\(G)\)-expansion method for the Burgers, Burgers–Huxley and modified Burgers–KdV equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we present travelling wave solutions for the Burgers, Burgers–Huxley and modified Burgers–KdV equations. The (G′/G)-expansion method is used to determine travelling wave solutions of these sets of equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Weiss, M Tabor and G Carnevale, J. Math. Phys. 24, 522 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. G T Liu and T Y Fan, Phys. Lett. A345, 161 (2005)

    MathSciNet  ADS  Google Scholar 

  3. R Hirota, The direct method in soliton theory (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  4. A M Wazwaz, Appl. Math. Comput. 150, 365 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. W Malfliet and W Hereman, Phys. Scr. 54, 563 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. J H He and X H Wu, Chaos, Solitons and Fractals 30, 700 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M L Wang, Y B Zhou and Z B Li, Phys. Lett. A216, 67 (1996)

    ADS  Google Scholar 

  8. M L Wang, X Z Li and J L Zhang, Phys. Lett. A372, 417 (2008)

    MathSciNet  ADS  Google Scholar 

  9. A Bekir, Phys. Lett. A372, 3400 (2008)

    MathSciNet  ADS  Google Scholar 

  10. I Aslan, Appl. Math. Comput. 215, 857 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. S Zhang, J L Tong and W Wang, Phys. Lett. A372, 2254 (2008)

    MathSciNet  ADS  Google Scholar 

  12. J Zhang, X Wei and Y Lu, Phys. Lett. A372, 3653 (2008)

    MathSciNet  ADS  Google Scholar 

  13. S Zhang, L Dong, J Ba and Y Sun, Phys. Lett. A373, 905 (2009)

    MathSciNet  ADS  Google Scholar 

  14. A Yu-Bin and L Chao, Commun. Theor. Phys. 51, 664 (2009)

    Article  ADS  MATH  Google Scholar 

  15. H Q Zhang, Nonlin. Sci. Numer. Simul. 14, 3220 (2009)

    Article  MATH  Google Scholar 

  16. L Wen-An, C Hao and Z Guo-Cai, Chin. Phys. B18, 400 (2009)

    ADS  Google Scholar 

  17. H Kheiri and A Jabbari, Acta Universitatis Apulensis 22, 185 (2010)

    MathSciNet  MATH  Google Scholar 

  18. A M Wazwaz, Appl. Math. Comput. 187, 1131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. A M Wazwaz, Appl. Math. Comput. 195, 754 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. J Satuma, Topics in soliton theory and exactly solvable nonlinear equations (World Scientific, Singapore, 1987)

    Google Scholar 

  21. I Mcintosh, Phys. Lett. A143, 57 (1990)

    MathSciNet  ADS  Google Scholar 

  22. D Jacobs, B Mckinney and M Shearer, Differential Equations 116, 448 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. A Bekir, Nonlin. Sci. Numer. Simul. 14, 1038 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H KHEIRI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KHEIRI, H., MOGHADDAM, M.R. & VAFAEI, V. Application of the \((G^{\prime}\)/\(G)\)-expansion method for the Burgers, Burgers–Huxley and modified Burgers–KdV equations. Pramana - J Phys 76, 831–842 (2011). https://doi.org/10.1007/s12043-011-0070-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0070-y

Keywords

PACS Nos

Navigation