Skip to main content
Log in

The Basic Helix-Loop-Helix Transcription Factor Family in the Sacred Lotus, Nelumbo Nucifera

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Nelumbo nucifera (Sacred Lotus) is a basal eudicot with exceptional physiological and metabolic properties including seed longevity, adaptations for an aquatic habit, and floral thermiogenesis. It also occupies a unique position in the phylogeny of land plants and can be a useful species for studies of conserved plant gene families. The basic-helix-loop-helix (bHLH) proteins represent one of the largest transcription factor families in plants and has undergone extensive duplication and expansion during plant evolution. One hundred and seventeen transcript models encoding canonical bHLHs were identified in the sacred lotus genome, as well as several “atypical” bHLH-encoding genes. The canonical bHLH proteins fall into 23 previously characterized subfamilies also present in other sequenced plant genomes, and are expressed as mRNA. Analysis of bHLHs from sacred lotus and other sequenced angiosperms indicates most of these families of bHLHs, along with secondary motifs associated with the bHLH domain, were likely present in the progenitor of flowering plants. The absence of a bHLH subfamily involved in root development in sacred lotus is consistent with the possibility that the development of specialized root structures may be mediated in part by changes in the bHLH families that regulate root development in dicots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 94:5172–5176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8:e1002446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153:1398–1412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2012) Geneious, version 5.4. 2011. Geneious, Auckland, New Zealand. Geneious version 5.6.2 created by Biomatters. Available from http://www.geneious.com/

  • Eddy SR (2008) A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 4:e1000069

    Article  PubMed Central  PubMed  Google Scholar 

  • Feller A, Hernandez JM, Grotewold E (2006) An ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors. J Biol Chem 281:28964–28974

    Article  CAS  PubMed  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  CAS  PubMed  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133:1605–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyun Y, Lee I (2006) KIDARI, encoding a non-DNA Binding bHLH protein, represses light signal transduction in Arabidopsis thaliana. Plant Mol Biol 61:283–296

    Article  CAS  PubMed  Google Scholar 

  • Jang G, Yi K, Pires ND, Menand B, Dolan L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138:2273–2281

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH (2004) A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16:3033–3044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M-J, Nelson W, Soderlund C, Gang D (2013) Next-generation sequencing-based transcriptional profiling of sacred lotus “China antique”. Trop Plant Biol 6:161–179

    Article  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    Article  CAS  PubMed  Google Scholar 

  • Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141:1167–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–863

    Article  CAS  PubMed  Google Scholar 

  • Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ming R et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41

    Article  PubMed  Google Scholar 

  • Moon J, Zhu L, Shen H, Huq E (2008) PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc Natl Acad Sci U S A 105:9433–9438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol 27:862–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pires ND, Yi K, Breuninger H, Catarino B, Menand B, Dolan L (2013) Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci U S A 110:9571–9576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y et al (2013) The sacred lotus genome provides insights into the evolution of flowering plants. Plant J 76(4):557–567

    Article  CAS  PubMed  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yi K, Menand B, Bell E, Dolan L (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet 42:264–267

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Hudson.

Additional information

Communicated by: Ray Ming

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1

Table – Sacred lotus bHLH gene models (XLSX 66 kb)

Additional file 2

bHLH phylogeny. See Methods for details. (PDF 583 kb)

Additional file 3

Atypical bHLH alignments (PPTX 7258 kb)

Additional File 4

Intron position in sacred lotus bHLH transcripts (PDF 47 kb)

Additional File 5

Consensus sequences for additional motifs found in sacred lotus bHLH proteins (PPTX 431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, K.A., Hudson, M.E. The Basic Helix-Loop-Helix Transcription Factor Family in the Sacred Lotus, Nelumbo Nucifera . Tropical Plant Biol. 7, 65–70 (2014). https://doi.org/10.1007/s12042-014-9138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-014-9138-4

Keywords

Navigation