Skip to main content

Advertisement

Log in

Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dental tissue is emerging as a promising source of stem cells especially in nerve regeneration mainly due to their neural origin and ease of harvest. We isolated dental stem cells from three sources, namely, dental pulp (DPSCs), dental follicle (DFSCs), and apical papilla (SCAP), and explored the efficacy of each towards neural differentiation in comparison to bone marrow-derived stem cells. The neural differentiation potential was assessed by expression of various neural markers and neurosphere assay. We observed that DPSCs were inherently predisposed towards neural lineage. To further delineate the paracrine cues responsible for the differences in neural differentiation potential, we harvested the conditioned secretome from each of the stem cell population and observed their effect on colony formation, neurite extension, and neural gene expression of IMR-32, a pre-neuroblastic cell line. We found that neural differentiation was significantly enhanced when IMR-32 cells were treated with secretome derived from DMSCs as compared to the same from BMSCs. Th1/Th2/Th17 cytokine array revealed DPSC secretome had higher expression of the cytokines like GCSF, IFNγ, and TGFβ that promote neural differentiation. Thus, we concluded that DPSCs may be the preferred source of cells for obtaining neural lineage among the four sources of stem cells. Our results also indicate that the DPSC-secreted factors may be responsible for their propensity towards neural differentiation. This study suggests that DPSCs and their secretomes can be a potentially lucrative source for cell-based and “cell-free” (secretome) therapy for neural disorders and injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim KS, Kim HS, Park JM, Kim HW, Park MK, Lee HS, et al. (2013) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol Aging 34(10):2408–2420

    Article  CAS  PubMed  Google Scholar 

  2. Akerud P, Canals JM, Snyder EY, Arenas E (2001) Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 21(20):8108–8118

    CAS  PubMed  Google Scholar 

  3. Lescaudron L, Boyer C, Bonnamain V, Fink KD, Leveque X, Rossignol J, et al. (2012) Assessing the potential clinical utility of transplantations of neural and mesenchymal stem cells for treating neurodegenerative diseases. Methods Mol Biol 879:147–164

    Article  CAS  PubMed  Google Scholar 

  4. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155

    Article  CAS  PubMed  Google Scholar 

  8. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, et al. (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  10. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19(9):2388–2398

    Article  PubMed  Google Scholar 

  11. Karaoz E, Demircan PC, Saglam O, Aksoy A, Kaymaz F, Duruksu G (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136(4):455–473

    Article  PubMed  Google Scholar 

  12. Arancio O, Chao MV (2007) Neurotrophins, synaptic plasticity and dementia. Curr Opin Neurobiol 17(3):325–330

    Article  CAS  PubMed  Google Scholar 

  13. Chen WW, Blurton-Jones M (2012) Concise review: can stem cells be used to treat or model Alzheimer’s disease? Stem Cells 30(12):2612–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar A, Bhattacharyya S, Rattan, V (2015) Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank

  15. Mudrabettu C, Kumar V, Rakha A, Yadav AK, Ramachandran R, Kanwar DB, et al. (2015) Safety and efficacy of autologous mesenchymal stromal cells transplantation in patients undergoing living donor kidney transplantation: a pilot study. Nephrology (Carlton) 20(1):25–33

    Article  CAS  Google Scholar 

  16. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. (2011) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56(7):709–721

    Article  CAS  PubMed  Google Scholar 

  17. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33(11):1402–1416

    Article  CAS  PubMed  Google Scholar 

  18. Zavan B, Michelotto L, Lancerotto L, Della Puppa A, D'Avella D, Abatangelo G, et al. (2010) Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurol Res 32(1):47–54

    Article  PubMed  Google Scholar 

  19. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107(2):275–281

    Article  CAS  PubMed  Google Scholar 

  20. Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L (2013) Immunological characterization of multipotent mesenchymal stromal cells—the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15(9):1054–1061

    Article  PubMed  Google Scholar 

  21. Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233(1–2):183–198

    Article  CAS  PubMed  Google Scholar 

  22. Seki T (2002) Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res 70(3):327–334

    Article  CAS  PubMed  Google Scholar 

  23. Draberova E, Del Valle L, Gordon J, Markova V, Smejkalova B, Bertrand L, et al. (2008) Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol 67(4):341–354

    Article  CAS  PubMed  Google Scholar 

  24. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23(3):392–402

    Article  CAS  PubMed  Google Scholar 

  25. Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125(10):1967–1978

    CAS  PubMed  Google Scholar 

  26. Lee JH, Um S, Song IS, Kim HY, Seo BM (2014) Neurogenic differentiation of human dental stem cells in vitro. J Korean Assoc Oral Maxillofac Surg 40(4):173–180

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neill D, Hughes D, Edwardson JA, Rima BK, Allsop D (1994) Human IMR-32 neuroblastoma cells as a model cell line in Alzheimer’s disease research. J Neurosci Res 39(4):482–493

    Article  CAS  PubMed  Google Scholar 

  28. Misiti F, Sampaolese B, Mezzogori D, Orsini F, Pezzotti M, Giardina B, et al. (2006) Protective effect of rhubarb derivatives on amyloid beta (1-42) peptide-induced apoptosis in IMR-32 cells: a case of nutrigenomic. Brain Res Bull 71(1–3):29–36

    Article  CAS  PubMed  Google Scholar 

  29. Kaur N, Dhiman M, Perez-Polo JR, Mantha AK (2015) Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Abeta25-35-induced neurotoxicity in human neuroblastoma cells. J Neurosci Res 93(6):938–947

    Article  CAS  PubMed  Google Scholar 

  30. Sumantran VN, Brederlau A, Funa K (2003) BMP-6 and retinoic acid synergistically differentiate the IMR-32 human neuroblastoma cells. Anticancer Res 23(2B):1297–1303

    CAS  PubMed  Google Scholar 

  31. Pence JC, Shorter NA (1990) In vitro differentiation of human neuroblastoma cells caused by vasoactive intestinal peptide. Cancer Res 50(16):5177–5183

    CAS  PubMed  Google Scholar 

  32. Park KS, Lee RD, Kang SK, Han SY, Park KL, Yang KH, et al. (2004) Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res 297(2):424–433

    Article  CAS  PubMed  Google Scholar 

  33. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  CAS  PubMed  Google Scholar 

  34. Davidson RM (1994) Neural form of voltage-dependent sodium current in human cultured dental pulp cells. Arch Oral Biol 39(7):613–620

    Article  CAS  PubMed  Google Scholar 

  35. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23

    Article  CAS  PubMed  Google Scholar 

  36. Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, et al. (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5(4):501–509

    Article  CAS  PubMed  Google Scholar 

  37. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115(8):2083–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jung KH, Chu K, Lee ST, Kim SJ, Sinn DI, Kim SU, et al. (2006) Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation. Brain Res 1073-1074:190–201

    Article  CAS  PubMed  Google Scholar 

  39. Wong G, Goldshmit Y, Turnley AM (2004) Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol 187(1):171–177

    Article  CAS  PubMed  Google Scholar 

  40. Vogel T, Ahrens S, Buttner N, Krieglstein K (2010) Transforming growth factor beta promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: identification of Nedd9 as an essential signaling component. Cereb Cortex 20(3):661–671

    Article  PubMed  Google Scholar 

  41. Li Z, Li K, Zhu L, Kan Q, Yan Y, Kumar P, et al. (2013) Inhibitory effect of IL-17 on neural stem cell proliferation and neural cell differentiation. BMC Immunol 14:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li L, Huang L, Vergis AL, Ye H, Bajwa A, Narayan V, et al. (2010) IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J Clin Invest 120(1):331–342

    Article  CAS  PubMed  Google Scholar 

  43. Eid RE, Rao DA, Zhou J, Lo SF, Ranjbaran H, Gallo A, et al. (2009) Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119(10):1424–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AK received fellowship support from CSIR, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalmoli Bhattacharyya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Electronic supplementary material

Figure S1

FACS characterization and multilineage differentiation of primary stem cells. a. FACS cytogram of BMSCs, b. DPSC, c. SCAP, d. DFSC to show the expression level of different stem cell markers, for DPSC (n = 5), SCAP (n = 5) and DFSC (n = 5) and BMSC (n = 3), e. Multilineage potential of different stem cell populations in cellular derivatives of osteocytes (alizarin red staining), adipocytes (oil red O staining is visible in lipid droplets) and hepatocytes (final images are merged images of LDL Dylight fluorochrome-red for low density lipoprotein uptake and LDL receptor-green). Magnification is 10X for osteocytes and 20X for adipocytes and hepatocytes, scale bar 100 μm (GIF 17 kb)

High resolution image (TIFF 2217 kb)

Figure S2

Intensity surface plots representing a 3D reconstruction of antibody binding intensities of NFM and MAP-2 antibody expression on surface of neural cells obtained after neural differentiation (GIF 7 kb)

High resolution image (TIFF 548 kb)

Figure S3

Neurosphere integrity assay. DIC images of neurospheres generated from different stem cells post seven days of differentiation and after 24 h of maintenance on adherent cell culture plate. Magnification-20X, scale bar 100 μm (GIF 5 kb)

High resolution image (TIFF 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, V., Rattan, V. et al. Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells. Mol Neurobiol 54, 4672–4682 (2017). https://doi.org/10.1007/s12035-016-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0011-3

Keywords

Navigation