Skip to main content

Advertisement

Log in

Loss of P2Y2 Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer's Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation is a prominent feature in Alzheimer's disease (AD) and activation of the brain's innate immune system, particularly microglia, has been postulated to both retard and accelerate AD progression. Recent studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is an important regulator of innate immunity by assisting in the recruitment of monocytes to injured tissue, neutrophils to bacterial infections and eosinophils to allergen-infected lungs. In this study, we investigated the role of the P2Y2R in progression of an AD-like phenotype in the TgCRND8 mouse model that expresses Swedish and Indiana mutations in amyloid precursor protein (APP). Our results indicate that P2Y 2 R expression is upregulated in TgCRND8 mouse brain within 10 weeks of age and then decreases after 25 weeks of age, as compared to littermate controls expressing low levels of the P2Y 2 R. TgCRND8 mice with homozygous P2Y 2 R deletion survive less than 5 weeks, whereas mice with heterozygous P2Y 2 R deletion survive for 12 weeks, a time point when TgCRND8 mice are fully viable. Heterozygous P2Y 2 R deletion in TgCRND8 mice increased β-amyloid (Aβ) plaque load and soluble Aβ1–42 levels in the cerebral cortex and hippocampus, decreased the expression of the microglial marker CD11b in these brain regions and caused neurological deficits within 10 weeks of age, as compared to age-matched TgCRND8 mice. These findings suggest that the P2Y2R is important for the recruitment and activation of microglial cells in the TgCRND8 mouse brain and that the P2Y2R may regulate neuroprotective mechanisms through microglia-mediated clearance of Aβ that when lost can accelerate the onset of an AD-like phenotype in the TgCRND8 mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439

    Article  CAS  PubMed  Google Scholar 

  2. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346

    Article  PubMed Central  PubMed  Google Scholar 

  3. Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147:867–883

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths M, Neal JW, Gasque P (2007) Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 82:29–55

    Article  CAS  PubMed  Google Scholar 

  5. Rozemuller AJ, van Gool WA, Eikelenboom P (2005) The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer's disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4:223–233

    Article  CAS  PubMed  Google Scholar 

  6. McGeer EG, Klegeris A, McGeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26(Suppl 1):94–97

    Article  PubMed  Google Scholar 

  7. Klegeris A, McGeer EG, McGeer PL (2007) Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol 20:351–357

    Article  CAS  PubMed  Google Scholar 

  8. Weisman GA, Camden JM, Peterson TS, Ajit D, Woods LT, Erb L (2012) P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y2 receptor interactions in neuroinflammation. Mol Neurobiol 46:96–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Burnstock G (2012) Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. Bioessays 34:218–225

    Article  CAS  PubMed  Google Scholar 

  10. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  11. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969

    Article  CAS  PubMed  Google Scholar 

  12. Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22:205–213

    Article  CAS  PubMed  Google Scholar 

  13. Ferrero ME (2012) Purinoceptors in inflammation: potential as anti-inflammatory therapeutic targets. Front Biosci 17:2172–2186

    Google Scholar 

  14. Soltoff SP, Avraham H, Avraham S, Cantley LC (1998) Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 273:2653–2660

    Article  CAS  PubMed  Google Scholar 

  15. Lustig KD, Sportiello MG, Erb L, Weisman GA (1992) A nucleotide receptor in vascular endothelial cells is specifically activated by the fully ionized forms of ATP and UTP. Biochem J 284(Pt 3):733–739

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Erb L, Lustig KD, Sullivan DM, Turner JT, Weisman GA (1993) Functional expression and photoaffinity labeling of a cloned P2U purinergic receptor. Proc Natl Acad Sci U S A 90:10449–10453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hussl S, Boehm S (2006) Functions of neuronal P2Y receptors. Pflugers Arch 452:538–551

    Article  CAS  PubMed  Google Scholar 

  18. Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41:356–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L (2012) Neuroprotective roles of the P2Y2 receptor. Purinergic Signal 8:559–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Koshiba M, Apasov S, Sverdlov V, Chen P, Erb L, Turner JT, Weisman GA, Sitkovsky MV (1997) Transient up-regulation of P2Y2 nucleotide receptor mRNA expression is an immediate early gene response in activated thymocytes. Proc Natl Acad Sci U S A 94:831–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Turner JT, Weisman GA, Landon LA, Park M, Camden JM (1998) Salivary gland nucleotide receptors: evidence for functional expression of both P2X and P2Y subtypes. Eur J Morphol 36(Suppl):170–175

    PubMed  Google Scholar 

  22. Seye CI, Kong Q, Erb L, Garrad RC, Krugh B, Wang M, Turner JT, Sturek M, Gonzalez FA, Weisman GA (2002) Functional P2Y2 nucleotide receptors mediate uridine 5′-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 106:2720–2726

    Article  CAS  PubMed  Google Scholar 

  23. Seye CI, Gadeau AP, Daret D, Dupuch F, Alzieu P, Capron L, Desgranges C (1997) Overexpression of P2Y2 purinoceptor in intimal lesions of the rat aorta. Arterioscler Thromb Vasc Biol 17:3602–3610

    Article  CAS  PubMed  Google Scholar 

  24. Kong Q, Peterson TS, Baker O, Stanley E, Camden J, Seye CI, Erb L, Simonyi A, Wood WG, Sun GY, Weisman GA (2009) Interleukin-1β enhances nucleotide-induced and α-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y2 receptor. J Neurochem 109:1300–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kim HJ, Ajit D, Peterson TS, Wang Y, Camden JM, Wood WG, Sun GY, Erb L, Petris M, Weisman GA (2012) Nucleotides released from Aβ1–42-treated microglial cells increase cell migration and Aβ1–42 uptake through P2Y2 receptor activation. J Neurochem 121:228–238

    Google Scholar 

  26. Erb L, Weisman GA (2012) Coupling of P2Y receptors to G proteins and other signaling pathways. WIREs Membr Transp Signal 1:789–803

    Article  CAS  Google Scholar 

  27. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer's disease. Arch Pharm Res 33:1539–1556

    Article  CAS  PubMed  Google Scholar 

  28. Cacabelos R, Alvarez XA, Franco-Maside A, Fernandez-Novoa L, Caamano J (1994) Serum tumor necrosis factor (TNF) in Alzheimer's disease and multi-infarct dementia. Methods Find Exp Clin Pharmacol 16:29–35

    CAS  PubMed  Google Scholar 

  29. Burgos M, Neary JT, Gonzalez FA (2007) P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 103:1785–1800

    Article  CAS  PubMed  Google Scholar 

  30. Lai MK, Tan MG, Kirvell S, Hobbs C, Lee J, Esiri MM, Chen CP, Francis PT (2008) Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer's disease neuropathology. J Neural Transm 115:1165–1172

    Article  CAS  PubMed  Google Scholar 

  31. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, George-Hyslop PS, Westaway D (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

    Article  CAS  PubMed  Google Scholar 

  32. Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y2 nucleotide receptor interaction with αV integrin mediates astrocyte migration. J Neurochem 95:630–640

    Article  CAS  PubMed  Google Scholar 

  33. DaSilva K, Brown ME, Westaway D, McLaurin J (2006) Immunization with amyloid-beta using GM-CSF and IL-4 reduces amyloid burden and alters plaque morphology. Neurobiol Dis 23:433–444

    Article  CAS  PubMed  Google Scholar 

  34. Turner JT, Weisman GA, Camden JM (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am J Physiol 273:C1100–C1107

    CAS  PubMed  Google Scholar 

  35. Ma K, Mount HT, McLaurin J (2011) Region-specific distribution of beta-amyloid peptide and cytokine expression in TgCRND8 mice. Neurosci Lett 492:5–10

    Article  CAS  PubMed  Google Scholar 

  36. Camden JM, Schrader AM, Camden RE, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J Biol Chem 280:18696–18702

    Article  CAS  PubMed  Google Scholar 

  37. Slack BE, Ma LK, Seah CC (2001) Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme. Biochem J 357:787–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I, Bartsch U, Weskamp G, Blobel CP, Glatzel M, De Strooper B, Saftig P (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 30:4833–4844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, LaFerla FM (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49:671–682

    Article  CAS  PubMed  Google Scholar 

  40. Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10. Cell 142:320–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  CAS  PubMed  Google Scholar 

  42. Vassar R, Kovacs DM, Yan R, Wong PC (2009) The beta-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 29:12787–12794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, Li R, Shen Y (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9:3–4

    Article  CAS  PubMed  Google Scholar 

  44. Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y (2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients. Proc Natl Acad Sci U S A 101:3632–3637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Weitz TM, Town T (2012) Microglia in Alzheimer's disease: it's all about context. Int J Alzheimers Dis 2012:314185

    PubMed Central  PubMed  Google Scholar 

  46. Akiyama H, McGeer PL (1990) Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30:81–93

    Article  CAS  PubMed  Google Scholar 

  47. Le Cabec V, Carreno S, Moisand A, Bordier C, Maridonneau-Parini I (2002) Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J Immunol 169:2003–2009

    PubMed  Google Scholar 

  48. Lalonde R, Strazielle C (2011) Brain regions and genes affecting limb-clasping responses. Brain Res Rev 67:252–259

    Article  CAS  PubMed  Google Scholar 

  49. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J Neurosci 19:3248–3257

    CAS  PubMed  Google Scholar 

  50. Hetze S, Romer C, Teufelhart C, Meisel A, Engel O (2012) Gait analysis as a method for assessing neurological outcome in a mouse model of stroke. J Neurosci Methods 206:7–14

    Article  PubMed  Google Scholar 

  51. Neumann M, Wang Y, Kim S, Hong SM, Jeng L, Bilgen M, Liu J (2009) Assessing gait impairment following experimental traumatic brain injury in mice. J Neurosci Methods 176:34–44

    Article  PubMed Central  PubMed  Google Scholar 

  52. Schrader AM, Camden JM, Weisman GA (2005) P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjogren's syndrome. Arch Oral Biol 50:533–540

    Article  CAS  PubMed  Google Scholar 

  53. Degagne E, Grbic DM, Dupuis AA, Lavoie EG, Langlois C, Jain N, Weisman GA, Sevigny J, Gendron FP (2009) P2Y2 receptor transcription is increased by NF-κB and stimulates cyclooxygenase-2 expression and PGE2 release by intestinal epithelial cells. J Immunol 183:4521–4529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Tharp WG, Lee YH, Greene SM, Vincellete E, Beach TG, Pratley RE (2012) Measurement of altered AbetaPP isoform expression in frontal cortex of patients with Alzheimer's disease by absolute quantification real-time PCR. J Alzheimers Dis 29:449–457

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Schmidt ML, DiDario AG, Lee VM, Trojanowski JQ (1994) An extensive network of PHF tau-rich dystrophic neurites permeates neocortex and nearly all neuritic and diffuse amyloid plaques in Alzheimer disease. FEBS Lett 344:69–73

    Article  CAS  PubMed  Google Scholar 

  56. Selkoe DJ (1989) The deposition of amyloid proteins in the aging mammalian brain: implications for Alzheimer's disease. Ann Med 21:73–76

    Article  CAS  PubMed  Google Scholar 

  57. Woodhouse A, Vickers JC, Adlard PA, Dickson TC (2009) Dystrophic neurites in TgCRND8 and Tg2576 mice mimic human pathological brain aging. Neurobiol Aging 30:864–874

    Article  CAS  PubMed  Google Scholar 

  58. Cummings BJ, Su JH, Geddes JW, Van Nostrand WE, Wagner SL, Cunningham DD, Cotman CW (1992) Aggregation of the amyloid precursor protein within degenerating neurons and dystrophic neurites in Alzheimer's disease. Neuroscience 48:763–777

    Article  CAS  PubMed  Google Scholar 

  59. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 155:853–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  61. Sisodia SS (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 89:6075–6079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Roberts SB, Ripellino JA, Ingalls KM, Robakis NK, Felsenstein KM (1994) Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. J Biol Chem 269:3111–3116

    CAS  PubMed  Google Scholar 

  63. O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 34:185–204

    PubMed Central  PubMed  Google Scholar 

  64. Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM (2000) Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. J Biol Chem 275:2568–2575

    Article  CAS  PubMed  Google Scholar 

  65. Lichtenthaler SF (2012) Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr Alzheimer Res 9:165–177

    Article  CAS  PubMed  Google Scholar 

  66. Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283–4292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49:489–502

    Article  CAS  PubMed  Google Scholar 

  68. Hao W, Liu Y, Liu S, Walter S, Grimm MO, Kiliaan AJ, Penke B, Hartmann T, Rube CE, Menger MD, Fassbender K (2011) Myeloid differentiation factor 88-deficient bone marrow cells improve Alzheimer's disease-related symptoms and pathology. Brain 134:278–292

    Article  PubMed  Google Scholar 

  69. Shie FS, Breyer RM, Montine TJ (2005) Microglia lacking E prostanoid receptor subtype 2 have enhanced Abeta phagocytosis yet lack Abeta-activated neurotoxicity. Am J Pathol 166:1163–1172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58:681–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    Article  CAS  PubMed  Google Scholar 

  72. Boche D, Denham N, Holmes C, Nicoll JA (2010) Neuropathology after active Abeta42 immunotherapy: implications for Alzheimer's disease pathogenesis. Acta Neuropathol 120:369–384

    Article  CAS  PubMed  Google Scholar 

  73. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  74. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    Article  PubMed  Google Scholar 

  75. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O'Banion MK (2007) Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117:1595–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y2 receptor interacts with αVβ3 integrins and is required for Go-mediated signal transduction. J Cell Biol 153:491–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with αV integrins to activate Go and induce cell migration. J Biol Chem 280:39050–39057

    Article  CAS  PubMed  Google Scholar 

  78. Liao Z, Seye CI, Weisman GA, Erb L (2007) The P2Y2 nucleotide receptor requires interaction with αV integrins to access and activate G12. J Cell Sci 120:1654–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Knauer MF, Soreghan B, Burdick D, Kosmoski J, Glabe CG (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci U S A 89:7437–7441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674

    CAS  PubMed  Google Scholar 

  81. Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta-amyloid through a β1 integrin-dependent mechanism. J Neurosci 24:9838–9846

    Article  CAS  PubMed  Google Scholar 

  82. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  PubMed  Google Scholar 

  83. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  84. Maquet D, Lekeu F, Warzee E, Gillain S, Wojtasik V, Salmon E, Petermans J, Croisier JL (2010) Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer's disease: simple versus dual task: a preliminary report. Clin Physiol Funct Imaging 30:51–56

    Article  CAS  PubMed  Google Scholar 

  85. Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci U S A 102:19138–19143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Peterson TS, Thebeau CN, Ajit D, Camden JM, Woods LT, Wood WG, Petris MJ, Sun GY, Erb L, Weisman GA (2013) Up-regulation and activation of the P2Y2 nucleotide receptor mediate neurite extension in IL-1β-treated mouse primary cortical neurons. J Neurochem 125:885–896

    Google Scholar 

  87. Yang CN, Shiao YJ, Shie FS, Guo BS, Chen PH, Cho CY, Chen YJ, Huang FL, Tsay HJ (2011) Mechanism mediating oligomeric Abeta clearance by naive primary microglia. Neurobiol Dis 42:221–230

    Article  CAS  PubMed  Google Scholar 

  88. Kukulski F, Ben Yebdri F, Bahrami F, Fausther M, Tremblay A, Sevigny J (2010) Endothelial P2Y2 receptor regulates LPS-induced neutrophil transendothelial migration in vitro. Mol Immunol 47, 991–999

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AG018357.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Weisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajit, D., Woods, L.T., Camden, J.M. et al. Loss of P2Y2 Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer's Disease. Mol Neurobiol 49, 1031–1042 (2014). https://doi.org/10.1007/s12035-013-8577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8577-5

Keywords

Navigation