Skip to main content

Advertisement

Log in

Gene Delivery Efficiency in Bone Marrow-derived Dendritic Cells: Comparison of Four Methods and Optimization for Lentivirus Transduction

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Many gene delivery methods have been used to transduce or transfect bone marrow-derived dendritic cells (BMDCs) for genetic engineered DC vaccine research. The present study, for the first time, evaluated the efficiencies of four methods (lipofection, DNA electroporation, recombinant adeno-associated virus type 2 (rAAV2) transduction, and recombinant lentivirus (rLV) transduction) using EGFP as a report gene in the same BMDC culture system. Our data demonstrate that rLV transduction is the most effective method; both lipofection and DNA electroporation transfect BMDCs at lower efficiencies; rAAV2 can hardly transduce BMDCs. Furthermore, our results, for the first time, demonstrate that rLV transduction efficiency on BMDCs can be improved significantly by co-centrifugation and repeated transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMDC:

Bone marrow-derived dendritic cell

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

rLV:

Recombinant lentivirus

rAAV2:

Recombinant adeno-associated virus type 2

MOI:

Multiplicity of infection

TU:

Transduction unit

APC:

Antigen presenting cell

References

  1. Yang, S. X., Vervaert, C. E., Burch, J., Jr., Grichnik, J., Seigler, H. F., & Darrow, T. L. (1999). Murine dendritic cells transfected with human GP100 elicit both antigen-specific CD8(+) and CD4(+) T-cell responses and are more effective than DNA vaccines at generating anti-tumor immunity. International Journal of Cancer, 83, 532–540.

    Article  CAS  Google Scholar 

  2. Ke, S., Chen, X. H., Li, H., Li, J. F., Gu, Q. L., Zhu, Z. G., et al. (2006). Optimization of electroporation parameters for transfection of plasmid DNA into mature bone marrow derived dendritic cell. Journal of Shanghai Second Medical University, 18, 71–76.

    CAS  Google Scholar 

  3. Zhang, Y., Chirmule, N., Gao, G. P., & Wilson, J. M. (2000). CD40 ligand dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: Role of immature dendritic cells. Journal of Virology, 74, 8003–8010.

    Article  CAS  Google Scholar 

  4. Breckpot, K., Dullaers, M., Bonehill, A., van Meirvenne, S., Heirman, C., de Greef, C., et al. (2003). Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. Journal of Gene Medicine, 5, 654–667.

    Article  CAS  Google Scholar 

  5. Rouas, R., Uch, R., Cleuter, Y., Jordier, F., Bagnis, C., Mannoni, P., et al. (2002). Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: Optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Therapy, 9, 715–724.

    Article  CAS  Google Scholar 

  6. Lutz, M. B., Kukutsch, N., Ogilvie, A. L. J., Rössner, S., Koch, F., Romani, N., et al. (1999). An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods, 223, 77–92.

    Article  CAS  Google Scholar 

  7. Auricchio, A., Hildinger, M., O’Connor, E., Gao, G. P., & Wilson, J. M. (2001). Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Human Gene Therapy, 12, 71–76.

    Article  CAS  Google Scholar 

  8. Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272, 263–267.

    Article  CAS  Google Scholar 

  9. Van Meirvenne, S., Straetman, L., Heirman, C., Dullaers, M., De Greef, C., Van Tendeloo, V., et al. (2002). Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Therapy, 9, 787–797.

    Article  Google Scholar 

  10. Bartlett, J. S., Wilcher, R., & Jude Samulski, R. (2000). Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. Journal of Virology, 74, 2777–2785.

    Article  CAS  Google Scholar 

  11. Liang, C. M., Ye, S. L., Zhong, C. P., Zheng, N., Bian, W., Sun, R. X., et al. (2007). More than chemotaxis: A new anti-tumor DC vaccine modified by rAAV2-SLC. Molecular Immunology, 44, 3797–3804.

    Article  CAS  Google Scholar 

  12. He, Y. K., Zhang, J. Y., Mi, Z. B., Robbins, P., & Falo, L. D. Jr. (2005). Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. Journal of Immunology, 174, 3808–3817.

    CAS  Google Scholar 

  13. Firat, H., Zennou, V., Garcia-Pons, F., Ginhoux, F., Madeleine, C., Danos, O., et al. (2002). Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. Journal of Gene Medicine, 4, 38–45.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by The Hi-Tech Research and Development of China, Grant No. 2006AA02A102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Xiu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, GB., Lu, GX. Gene Delivery Efficiency in Bone Marrow-derived Dendritic Cells: Comparison of Four Methods and Optimization for Lentivirus Transduction. Mol Biotechnol 43, 250–256 (2009). https://doi.org/10.1007/s12033-009-9197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9197-1

Keywords

Navigation