Skip to main content
Log in

The Fatty Acid Transport Protein (FATP) Family: Very Long Chain Acyl-CoA Synthetases or Solute Carriers?

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cellular fatty acids typically derive from uptake from the extracellular milieu and, to a lesser extent, de novo synthesis. Extracellular fatty acids must traverse the plasma membrane, after which they are activated to their CoA thioesters for subsequent metabolism. Both uptake and metabolism are rapid processes, and there has been considerable debate as to whether transport of fatty acids across the lipid bilayer of the plasma membrane proceeds by diffusion or requires transport proteins. One group of proteins proposed to translocate fatty acids is the six-member Fatty Acid Transport Protein (FATP) family. These proteins were designated as such because when overexpressed, host cells exhibited higher rates of accretion of radioactive or fluorescent fatty acids. However, one member of this family, FATP2, is identical to an enzyme with very long-chain acyl-CoA synthetase (ACSVL) activity. This enzyme (ACSVL1 or FATP2), was isolated using classical protein purification techniques. In fact, the six-member ACSVL protein family is identical to the six-member FATP family. We and others have established that all six proteins have acyl-CoA synthetase activity. It remains to be established whether they participate in the physical translocation process, or facilitate transport by trapping, as CoA derivatives, fatty acids that enter cells by diffusion. To characterize the biological functions of the ACSVLs, we are investigating the properties of the overexpressed proteins and the endogenous proteins. We observed that for many ACSVLs, the subcellular location of the overexpressed protein differs from that of the endogenous protein. Using RNA interference (siRNA), we knocked down expression of FATP4 (proposed name: ACSVL5) in Neuro2a cells. Activation of both long-chain (C16:0) and very long-chain fatty acids (C24:0) was decreased when FATP4 was depleted. Despite decreased enzyme activity, initial rates of uptake of [14C]C16:0 were not affected when FATP4 was depleted. In contrast, COS-1 cells overexpressing FATP4 showed enhanced [14C]C16:0 uptake. Neither endogenous (Neuro2a) nor overexpressed (COS-1) FATP4 was localized to plasma membrane under routine cell culture conditions, but rather were found in intracellular membrane compartments. We conclude that, in the cell lines studied, endogenous FATP4 does not function to translocate FA across the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abumrad, N. A., Sfeir, Z., Connelly, M. A., & Coburn, C. (2000). Lipid transporters: Membrane transport systems for cholesterol and fatty acids. Current Opinion in Clinical Nutrition and Metabolic Care, 3, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Coe, N. R., Smith, A. J., Frohnert, B. I., Watkins, P. A., & Bernlohr, D. A. (1999). The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. Journal of biological chemistry, 274, 36300–36304.

    Article  PubMed  CAS  Google Scholar 

  • DiRusso, C. C., Li, H., Darwis, D., Watkins, P. A., Berger, J., & Black, P. N. (2005). Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast. Journal of biological chemistry, 280, 16829–16837.

    Article  PubMed  CAS  Google Scholar 

  • Gimeno, R. E., Ortegon, A. M., Patel, S., Punreddy, S., Ge, P., Sun, Y., et al. (2003). Characterization of a heart-specific fatty acid transport protein. Journal of Biological Chemistry, 278, 16039–16044.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A. M., Smith, A. J., & Bernlohr, D. A. (2003). Characterization of the Acyl CoA synthetase activity of purified murine fatty acid transport protein 1. Journal of Biological Chemistry, 278, 43008–43013.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A. M., Wiczer, B. M., Herrmann, T., Stremmel, W., & Bernlohr, D. A. (2005). Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of Acyl-CoA synthetase activities in tissues from FATP4 null mice. Journal of Biological Chemistry, 280, 11948–11954.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, P. A., Gulve, E. A., & Holloszy, J. O. (1994) Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle. Journal of Applied Physiology, 76, 979–985.

    PubMed  CAS  Google Scholar 

  • Herrmann, T., Buchkremer, F., Gosch, I., Hall, A. M., Bernlohr, D. A., & Stremmel, W. (2001). Mouse fatty acid transport protein 4 (FATP4): Characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene, 270, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, D., Stahl, A., & Lodish, H. F. (1998). A family of fatty acid transporters conserved from mycobacterium to man. Proceedings of the National Academy of Sciences of the United States of America, 95, 8625–8629.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, F., Guo, W., Souto, R., Pilch, P. F., Corkey, B. E., & Hamilton, J. A. (2003). Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. Journal of Biological Chemistry, 278, 7988–7995.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, F., Zakim, D., Zhang, F., Noy, N., & Hamilton, J. A. (1995). Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry, 34, 11928–11937.

    Article  PubMed  CAS  Google Scholar 

  • Luiken, J. J., Turcotte, L. P., & Bonen, A. (1999). Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. Journal of Lipid Research, 40, 1007–1016.

    PubMed  CAS  Google Scholar 

  • Mashek, D. G., Bornfeldt, K. E., Coleman, R. A., Berger, J., Bernlohr, D. A., Black, P., et al. (2004). Revised nomenclature for the long chain mammalian acyl-CoA synthetase gene family. Journal of Lipid Research, 45, 1958–1961.

    Article  PubMed  CAS  Google Scholar 

  • Muller, G., Jordan, H., Petry, S., Wetekam, E. M., & Schindler, P. (1997). Analysis of lipid metabolism in adipocytes using a fluorescent fatty acid derivative. I. Insulin stimulation of lipogenesis. Biochimica et Biophysica Acta, 1347, 23–39.

    PubMed  CAS  Google Scholar 

  • Pei, Z., Fraisl, P., Berger, J., Jia, Z., Forss-Petter, S., & Watkins, P. A. (2004). Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. Journal of Biological Chemistry, 279, 54454–54462.

    Article  PubMed  CAS  Google Scholar 

  • Pei, Z., Oey, N. A., Zuidervaart, M. M., Jia, Z., Li, Y., Steinberg, S. J., et al. (2003) The acyl-CoA synthetase “bubblegum” (lipidosin): Further characterization and role in neuronal fatty acid beta-oxidation. Journal of Biological Chemistry, 278, 47070–47078.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer, J. E., & Lodish, H. F. (1994). Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 79, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, A., Gimeno, R. E., Tartaglia, L. A., & Lodish, H. F. (2001). Fatty acid transport proteins: A current view of a growing family. Trends in Endocrinology and Metabolism, 12, 266–273.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, A., Hirsch, D. J., Gimeno, R. E., Punreddy, S., Ge, P., Watson, N., et al. (1999). Identification of the major intestinal fatty acid transport protein. Molecular Cell, 4, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. J., Mihalik, S. J., Kim, D. G., Cuebas, D. A., & Watkins, P. A. (2000a). The human liver-specific homolog of very long-chain acyl-CoA synthetase is cholate: CoA ligase. Journal of Biological Chemistry, 275, 15605–15608.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. J., Morgenthaler, J., Heinzer, A. K., Smith, K. D., & Watkins, P. A. (2000b). Very long-chain acyl-CoA synthetases. Human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. Journal of Biological Chemistry, 275, 35162–35169.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. J., Wang, S. J., Kim, D. G., Mihalik, S. J., & Watkins, P. A. (1999a). Human very-long-chain acyl-CoA synthetase: Cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochemical and Biophysical Research Communications, 257, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. J., Wang, S. J., McGuinness, M. C., & Watkins, P. A. (1999b). Human liver-specific very-long-chain acyl-coenzyme A synthetase: cDNA cloning and characterization of a second enzymatically active protein. Molecular Genetics and Metabolism, 68, 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, Y., Kondo, N., Orii, T., & Hashimoto, T. (1996). Purification and properties of rat liver peroxisomal very-long-chain acyl-CoA synthetase. Journal of Biochemistry (Tokyo), 119, 565–571.

    CAS  Google Scholar 

  • Uchiyama, A., Aoyama, T., Kamijo, K., Uchida, Y., Kondo, M., Orii, T., et al. (1996). Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. Journal of Biological Chemistry, 271, 30360–30365.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, P. A. (1997). Fatty acid activation. Progress in Lipid Research, 36, 55–83.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, P. A., Ferrell, E. V., Jr., Pedersen, J. I., & Hoefler, G. (1991). Peroxisomal fatty acid beta-oxidation in HepG2 cells. Archives of Biochemistry and Biophysics, 289, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, P. A., Gould, S. J., Smith, M. A., Braiterman, L. T., Wei, H.-M., Kok, F., et al. (1995). Altered expression of ALDP in X-linked adrenoleukodystrophy. American Journal of Human Genetics, 57, 292–301.

    PubMed  CAS  Google Scholar 

  • Watkins, P. A., Pevsner, J., & Steinberg, S. J. (1999). Human very long-chain acyl-CoA synthetase and two human homologs: Initial characterization and relationship to fatty acid transport protein. Prostaglandins, Leukotrienes and Essential Fatty Acids, 60, 323–328.

    Article  CAS  Google Scholar 

  • Zimmerman, A. W., & Veerkamp, J. H. (2002). New insights into the structure and function of fatty acid-binding proteins. Cellular and Molecular Life Sciences, 59, 1096–1116.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Catherine Thompson for providing human brain cDNA. This work was supported by NIH grants NS37355, HD10981, and HD24061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Watkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Pei, Z., Maiguel, D. et al. The Fatty Acid Transport Protein (FATP) Family: Very Long Chain Acyl-CoA Synthetases or Solute Carriers?. J Mol Neurosci 33, 25–31 (2007). https://doi.org/10.1007/s12031-007-0038-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0038-z

Keywords

Navigation