Skip to main content

Advertisement

Log in

The marginating-pulmonary immune compartment in mice exhibits increased NK cytotoxicity and unique cellular characteristics

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

To test whether marginating-pulmonary (MP) leukocytes in mice have a unique potential to identify and destroy aberrant circulating cells, we compared MP to circulating leukocytes with respect to natural killer (NK) cytotoxicity, proinflammatory characteristics, molecular determinants of activation, and response to IL-12 immunostimulation. Cytotoxicity was assessed employing the YAC-1, B16F10, and 3LL target lines. C57BL/6 mice were injected with either saline or murine IL-12 (0.1 or 0.5 µg/mouse), either once or three times 48-h apart. Twenty-four hours after last injection, cardiac blood was withdrawn and MP leukocytes were collected by forced lung perfusion. NK cytotoxicity, cellular composition, and surface molecular markers were studied. MP leukocytes exhibited greater NK cytotoxicity than circulating leukocytes against the syngeneic B16F10 and 3LL tumor lines, but not against the allogeneic YAC-1 line. NKG2D and IL-12 receptor expression predicted NK cytotoxicity in circulating leukocytes, but not in MP leukocytes. IFNγ-receptor, IL-12-receptor, CD69, CD11a, and CD11b showed different patterns of expression in the two leukocyte populations, suggesting pro-inflammatory characteristics of the MP compartment. IL-12 stimulation caused differential effects on these markers and also elevated cytotoxicity in both compartments, but in different effector: target ratio-dependent patterns. MP leukocytes may play a critical role in eliminating aberrant circulating cells due to their enhanced NK cytotoxicity and given their strategic location in the lungs vasculature, which forces physical interactions with all circulating aberrant cells. MP-NK cells are unique in their cytotoxic mechanisms against syngeneic targets and in their activation profile and response to immunostimulatory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benish M, et al. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15(7):2042–52.

    Article  PubMed  Google Scholar 

  2. Melamed R, et al. The marginating-pulmonary immune compartment in rats: characteristics of continuous inflammation and activated NK cells. J Immunother. 2010;33(1):16–29.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Melamed R, et al. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a beta-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun. 2005;19(2):114–26.

    Article  CAS  PubMed  Google Scholar 

  4. Vanderkerken K, Bouwens L, Wisse E. Characterization of a phenotypically and functionally distinct subset of large granular lymphocytes (pit cells) in rat liver sinusoids. Hepatology. 1990;12(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  5. Barlozzari T, et al. Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J Immunol. 1985;134(4):2783–9.

    CAS  PubMed  Google Scholar 

  6. Barlozzari T, Reynolds CW, Herberman RB. In vivo role of natural killer cells: involvement of large granular lymphocytes in the clearance of tumor cells in anti-asialo GM1-treated rats. J Immunol. 1983;131(2):1024–7.

    CAS  PubMed  Google Scholar 

  7. Ben-Eliyahu S, Page GG. In vivo assessment of natural killer cell activity in rats. Prog NeuroendocrineImmunol. 1992;5:199–214.

    Google Scholar 

  8. Ben-Eliyahu S, et al. Acute alcohol intoxication suppresses natural killer cell activity and promotes tumor metastasis. Nat Med. 1996;2(4):457–60.

    Article  CAS  PubMed  Google Scholar 

  9. Shakhar G, Ben-Eliyahu S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol. 1998;160(7):3251–8.

    CAS  PubMed  Google Scholar 

  10. Goldfarb Y, et al. Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg. 2011;253(4):798–810.

    Article  PubMed  Google Scholar 

  11. Glasner A, et al. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol. 2012;188(6):2509–15.

    Article  CAS  PubMed  Google Scholar 

  12. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz Y, et al. Prophylactic IL-12 treatment reduces postoperative metastasis: mediation by increased numbers but not cytotoxicity of NK cells. Breast Cancer Res Treat. 2008;107(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  14. Ben-Eliyahu S, et al. Increased susceptibility to metastasis during pro-oestrus/oestrus in rats: possible role of oestradiol and natural killer cells. Br J Cancer. 1996;74(12):1900–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ottenhof PC, Morales A, Baines MG. Quantitation of a whole blood assay for human natural killer cell activity. J Immunol Methods. 1981;42(3):305–18.

    Article  CAS  PubMed  Google Scholar 

  16. Elsner L, et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol. 2007;179(8):5523–33.

    Article  CAS  PubMed  Google Scholar 

  17. Diefenbach A, et al. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  18. Shirey KA, et al. Upregulation of IFN-gamma receptor expression by proinflammatory cytokines influences IDO activation in epithelial cells. J Interferon Cytokine Res. 2006;26(1):53–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Takeda K, et al. IFN-{gamma} production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. J Leukoc Biol. 2011;90(4):777–85.

    Article  CAS  PubMed  Google Scholar 

  20. Parihar R, et al. IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells. J Clin Invest. 2002;110(7):983–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mazzone A, Ricevuti G. Leukocyte CD11/CD18 integrins: biological and clinical relevance. Haematologica. 1995;80(2):161–75.

    CAS  PubMed  Google Scholar 

  22. Davis HM, et al. Human granulocyte CD11b expression as a pharmacodynamic biomarker of inflammation. J Immunol Methods. 2000;240(1–2):125–32.

    Article  CAS  PubMed  Google Scholar 

  23. Soderquest K, et al. Monocytes control natural killer cell differentiation to effector phenotypes. Blood. 2011;117(17):4511–8.

    Article  CAS  PubMed  Google Scholar 

  24. Davignon D, et al. Lymphocyte function-associated antigen 1 (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci U S A. 1981;78(7):4535–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Barber DF, Faure M, Long EO. LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol. 2004;173(6):3653–9.

    Article  CAS  PubMed  Google Scholar 

  26. Matsumoto G, et al. Adhesion mediated by LFA-1 is required for efficient IL-12-induced NK and NKT cell cytotoxicity. Eur J Immunol. 2000;30(12):3723–31.

    Article  CAS  PubMed  Google Scholar 

  27. Matsumoto G, et al. Essential role of LFA-1 in activating Th2-like responses by alpha-galactosylceramide-activated NKT cells. J Immunol. 2004;173(8):4976–84.

    Article  CAS  PubMed  Google Scholar 

  28. Esplugues E, et al. Induction of tumor NK-cell immunity by anti-CD69 antibody therapy. Blood. 2005;105(11):4399–406.

    Article  CAS  PubMed  Google Scholar 

  29. Sancho D, Gomez M, Sanchez-Madrid F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 2005;26(3):136–40.

    Article  CAS  PubMed  Google Scholar 

  30. Esplugues E, et al. Enhanced antitumor immunity in mice deficient in CD69. J Exp Med. 2003;197(9):1093–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wisse E, et al. The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res. 1976;173(4):423–35.

    Article  CAS  PubMed  Google Scholar 

  32. Wisse E, et al. On the function of pit cells, the liver-specific natural killer cells. Semin Liver Dis. 1997;17(4):265–86.

    Article  CAS  PubMed  Google Scholar 

  33. Luo D, et al. Involvement of LFA-1 in hepatic NK cell (pit cell)-mediated cytolysis and apoptosis of colon carcinoma cells. J Hepatol. 1999;31(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  34. Bahjat KS, et al. Activation of immature hepatic NK cells as immunotherapy for liver metastatic disease. J Immunol. 2007;179(11):7376–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Cancer Institute at the National Institute of Health (CA125456 to S.B.E.) and a grant from the Israel-USA bi-national Science Foundation (2005331 to S.B.E.).

Conflict of interest

There are no financial and commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marganit Benish or Shamgar Ben-Eliyahu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benish, M., Melamed, R., Rosenne, E. et al. The marginating-pulmonary immune compartment in mice exhibits increased NK cytotoxicity and unique cellular characteristics. Immunol Res 58, 28–39 (2014). https://doi.org/10.1007/s12026-013-8435-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8435-6

Keywords

Navigation