Skip to main content

Advertisement

Log in

Berberine inhibits the expression of TNFα, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARγ pathway

  • Original Paper
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Macrophages are the main source of cytokines in atherosclerotic plaques. Modified low-density lipoproteins may stimulate macrophages to produce large quantities of proinflammatory cytokines that promote atherosclerosis. Berberine is the main component of the traditional Chinese medicine umbellatine, which has a widespread effect and was used to treat many diseases clinically. Our previous study found that berberine could increase adipophilin expression in macrophages, which is a target gene of PPARγ. PPARγ agonist could decrease proinflammatory cytokines in macrophage. In this study, we investigated the effects and the mechanism of action of berberine on the expression and secretion of TNFα, MCP-1, and IL-6 in vitro to identify new pharmacological actions of berberine. The results of RT-PCR and ELISA shows that berberine may inhibit the expression and secretion of the tumor necrosis factor α (TNFα), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6) in macrophages stimulated by acetylated low-density lipoprotein (AcLDL), whereas the peroxisome proliferator-activated receptor γ (PPARγ) inhibitor GW9662 could attenuate this effect of berberine. This study demonstrates that berberine may inhibit the expression and production of TNF-α, MCP-1, and IL-6 in AcLDL-stimulated macrophages. This effect might be partially mediated through PPARγ activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Ross, Am. Heart J. 138(5 Pt 2), S419–S420 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. G.K. Hansson, N. Engl. J. Med. 352, 1685–1695 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. P. Libby, Nature 420, 868–874 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. A. Tedgui, Z. Mallat, Physiol. Rev. 86, 515–581 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. D. Steinberg, J. Biol. Chem. 272, 20963–20966 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. D. Steinberg, S. Parthasarathy, T.E. Carew et al., N. Engl. J. Med. 320, 915–924 (1989)

    Article  CAS  PubMed  Google Scholar 

  7. W. Kong, J. Wei, P. Abidi et al., Nat. Med. 10, 1344–1351 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. S. Lee, H.J. Lim, H.Y. Park et al., Atherosclerosis 186, 29–37 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. C.L. Kuo, C.W. Chi, T.Y. Liu, Cancer Lett. 203, 127–137 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. K. Fukuda, Y. Hibiya, M. Mutoh et al., J. Ethnopharmacol. 66, 227–233 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. C.Y. Hsiang, S.L. Wu, S.E. Cheng et al., J. Biomed. Sci. 12, 791–801 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. L. Branen, L. Hovgaard, M. Nitulescu et al., Arterioscler. Thromb. Vasc. Biol. 24, 2137–2142 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Seino, U. Ikeda, M. Ikeda et al., Cytokine 6, 87–91 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. P.M. Ridker, N. Rifai, M.J. Stampfer et al., Circulation 101, 1767–1772 (2000)

    CAS  PubMed  Google Scholar 

  15. S. Inoue, K. Egashira, W. Ni et al., Circulation 106, 2700–2706 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. W. Ni, K. Egashira, S. Kitamoto et al., Circulation 103, 2096–2101 (2001)

    CAS  PubMed  Google Scholar 

  17. J. Yin, R. Hu, M. Chen et al., Metabolism 51, 1439–1443 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Feng-Ling Chen, Zhi-hong Yang, Xuan-Chun Wang et al., J. Xinxiang Med. Coll. 24, 544–547 (2007)

    CAS  Google Scholar 

  19. I. Bildirici, C.R. Roh, W.T. Schaiff et al., J. Clin. Endocrinol. Metab. 88, 6056–6062 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. G. Larigauderie, M.A. Bouhlel, C. Furman et al., Arterioscler. Thromb. Vasc. Biol. 24, 504–510 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Y.J. Geng, P. Libby, Arterioscler. Thromb. Vasc. Biol. 22, 1370–1380 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. I. Tabas, Cell Death Differ. 11(Suppl 1), S12–S16 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Z.S. Galis, M. Muszynski, G.K. Sukhova et al., Circ. Res. 75, 181–189 (1994)

    CAS  PubMed  Google Scholar 

  24. Z.S. Galis, M. Muszynski, G.K. Sukhova et al., Ann. N. Y. Acad. Sci. 748, 501–507 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. L.S.M. Boestena, A.S.M. Zadelaar, A. van Nieuwkoop et al., Cardiovas. Res. 6, 179–185 (2005)

    Google Scholar 

  26. E.J. Leonard, A. Skeel, T. Yoshimura, Adv. Exp. Med. Biol. 305, 57–64 (1991)

    CAS  PubMed  Google Scholar 

  27. K. HoonHan, R.K. Tangirala, S.R. Green et al., Arterioscler. Thromb. Vasc. Biol. 18, 1983–1991 (1998)

    Google Scholar 

  28. E. Mori, K. Komori, T. Yamaoka et al., Circulation 105, 2905–2910 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. M. Romano, M. Sironi, C. Toniatti et al., Immunity 6, 315–325 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. S. Morimoto, T. Nabata, E. Koh et al., J. Cardiovasc. Pharmacol. 17(Suppl. 2), S117–S118 (1991)

    Article  PubMed  Google Scholar 

  31. D.U. Lee, Y.J. Kang, M.K. Park et al., Life Sci. 73, 1401–1412 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. S. Takashiba, L. Shapira, S. Amar et al., Gene 131, 307–308 (1993)

    Article  CAS  PubMed  Google Scholar 

  33. V. Pasceri, H.D. Wu, J.T. Willerson et al., Circulation 101, 235–238 (2000)

    CAS  PubMed  Google Scholar 

  34. C. Jiang, A.T. Ting, B. Seed, Nature 391, 82–86 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. N. Marx, G. Sukhova, C. Murphy et al., Am. J. Pathol. 153, 17–23 (1998)

    CAS  PubMed  Google Scholar 

  36. B.H. Choi, I.S. Ahn, Y.H. Kim et al., Exp. Mol. Med. 38, 599–605 (2006)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been funded by grants to RMH from the Key Project of National Science Foundation of China (30230380), the National Nature Science Foundation of China (39900072, 30670999, 30711120573), the High Tech Program (2002BA711A05 and 2001AA221201), the National Key Basic Research and Development Program (2002CB713703), the Shanghai Commission for Science and Technology (01JC14026), and by grant to Chen FL from Shanghai Commission for Science and Technology (07ZR14071) and from the National Nature Science Foundation of China (30870954). The authors also would like to thank Tang JF of Shanghai Institute of Endocrinology for ELISA technique in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Ming Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F.L., Yang, Z.H., Liu, Y. et al. Berberine inhibits the expression of TNFα, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARγ pathway. Endocr 33, 331–337 (2008). https://doi.org/10.1007/s12020-008-9089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-008-9089-3

Keywords

Navigation