Skip to main content

Advertisement

Log in

Dual Contribution of Mesenchymal Stem Cells Employed for Tissue Engineering of Peripheral Nerves: Trophic Activity and Differentiation into Connective-Tissue Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adult peripheral nerves in vertebrates can regrow their axons and re-establish function after crush lesion. However, when there is extensive loss of a nerve segment, due to an accident or compressive damage caused by tumors, regeneration is strongly impaired. In order to overcome this problem, bioengineering strategies have been employed, using biomaterials formed by key cell types combined with biodegradable polymers. Many of these strategies are successful, and regenerated nerve tissue can be observed 12 weeks after the implantation. Mesenchymal stem cells (MSCs) are one of the key cell types and the main stem-cell population experimentally employed for cell therapy and tissue engineering of peripheral nerves. The ability of these cells to release a range of different small molecules, such as neurotrophins, growth factors and interleukins, has been widely described and is a feasible explanation for the improvement of nerve regeneration. Moreover, the multipotent capacity of MSCs has been very often challenged with demonstrations of pluripotency, which includes differentiation into any neural cell type. In this study, we generated a biomaterial formed by EGFP-MSCs, constitutively covering microstructured filaments made of poly-ε-caprolactone. This biomaterial was implanted in the sciatic nerve of adult rats, replacing a 12-mm segment, inside a silicon tube. Our results showed that six weeks after implantation, the MSCs had differentiated into connective-tissue cells, but not into neural crest-derived cells such as Schwann cells. Together, present findings demonstrated that MSCs can contribute to nerve-tissue regeneration, producing trophic factors and differentiating into fibroblasts, endothelial and smooth-muscle cells, which compose the connective tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α-SMA:

alpha smooth muscle actin

ANOVA:

analysis of variance

BDNF:

brain-derived neurotrophic factor, CD-90, 45, 34, 29 and 31, cluster of differentiation 90, 45, 34, 29 and 31

DMEM:

Dulbecco’s modified Eagle medium

DRG:

dorsal root ganglia;

EC:

endothelial cells

EDTA:

ethylenediaminetetraacetic acid

EGFP:

enhanced green fluorescent protein

hADSC:

human adipose-derived stromal cells

MSCs:

mesenchymal stem cells

NF-200:

neurofilament-200

NGF:

nerve growth factor

PBS:

phosphate buffered saline

PCL:

polycaprolactone

PF:

paraformaldehyde

PNS:

peripheral nervous system

SC:

Schwann cells

VEGF:

vascular endothelial growth factor

References

  1. Chen, Z. L., Yu, W. M., & Strickland, S. (2007). Peripheral Regeneration. Annual Review of Neuroscience, 30, 209 – 33.

    Article  PubMed  Google Scholar 

  2. Geuna, S., Raimondo, S., Ronchi, G., Di Scipio, F., Tos, P., Czaja, K., & Fornaro, M. (2009). Chapter 3: Histology of the peripheral nerve and changes occurring during nerve regeneration. International Review of Neurobiology, 87, 27–46.

    Article  PubMed  Google Scholar 

  3. Scheib, J., & Höke, A. (2013). Advances in peripheral nerve regeneration. Nature Reviews. Neurology, 9, 668 – 76.

    Article  CAS  PubMed  Google Scholar 

  4. Daly, W., Yao, L., Zeugolis, D., Windebank, A., & Pandit, A. (2012). A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of the Royal Society, Interface, 9, 202 – 21.

    Article  CAS  PubMed  Google Scholar 

  5. Geuna, S., Raimondo, S., Fregnan, F., Haastert-Talini, K., & Grothe, C. (2016). In vitro models for peripheral nerve regeneration. European Journal of Neurology, 43, 287 – 96.

    CAS  Google Scholar 

  6. Vargas, M. E., & Barres, B. A. (2007). Why is Wallerian degeneration in the CNS so slow? Annual Review of Neuroscience, 30, 153 – 79.

    Article  CAS  PubMed  Google Scholar 

  7. Conforti, L., Gilley, J., & Coleman, M. P. (2014). Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nature Reviews Neurology, 15, 394–409.

    Article  CAS  Google Scholar 

  8. Caplan, A. Why are MSCs therapeutic? New data: new insight. The Journal of Pathology. 2009;217:318 – 24.

  9. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28, 585 – 96.

    CAS  PubMed  Google Scholar 

  10. Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294 – 301.

    Article  CAS  PubMed  Google Scholar 

  11. Ribeiro-Resende, V. T., Pimentel-Coelho, P. M., Mesentier-Louro, L. A., Mendez, R. M., Mello-Silva, J. P., Cabral-da-Silva, M. C., de Mello, F. G., de Melo Reis, R. A., & Mendez-Otero, R. (2009). Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience, 159, 540–549.

    Article  CAS  PubMed  Google Scholar 

  12. Moodley, Y., Vaghjiani, V., Chan, J., Baltic, S., Ryan, M., Tchongue, J., Samuel, C. S., Murthi, P., Parolini, O., & Manuelpillai, U. (2013). Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS ONE, 8(8), e69299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wakao, S., Hayashi, T., Kitada, M., Kohama, M., Matsue, D., Teramoto, N., Ose, T., Itokazu, Y., Koshino, K., Watabe, H., Iida, H., Takamoto, T., Tabata, Y., & Dezawa, M. (2010). Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Experimental Neurology, 223, 537 – 47.

    Article  CAS  PubMed  Google Scholar 

  14. Pereira-Lopes, F. R., Frattini, F., Marques, S. A., Almeida, F. M., de Moura Campos, L. C., Langone, F., Lora, S., Borojevic, R., & Martinez, A. M. Transplantation of bone-marrow-derived cells into a nerve guide resulted in transdifferentiation into Schwann cells and effective regeneration of transected mouse sciatic nerve. Micron 2010;41:783–90.

    Article  PubMed  Google Scholar 

  15. Keilhoff, G., Goihl, A., Stang, F., Wolf, G., & Fansa, H. (2006). Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Engineering, 12, 1451–1465.

    Article  CAS  PubMed  Google Scholar 

  16. Yuen, T. J., Silbereis, J. C., Griveau, A., Chang, S. M., Daneman, R., Fancy, S. P., Zahed, H., Maltepe, E., & Rowitch, D. H. (2014). Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 158, 383 – 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Widenfalk, J., Lipson, A., Jubran, M., Hofstetter, C., Ebendal, T., Cao, Y., & Olson, L. (2003). Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience, 120, 951 – 60.

    Article  CAS  PubMed  Google Scholar 

  18. Storkebaum, E., Lambrechts, D., & Carmeliet, P. (2004). VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays, 26, 943 – 54.

    Article  CAS  PubMed  Google Scholar 

  19. Meyer, C., Stenberg, L., Gonzalez-Perez, F., Wrobel, S., Ronchi, G., Udina, E., Suganuma, S., Geuna, S., Navarro, X., Dahlin, L. B., Grothe, C., & Haastert-Talini, K. (2015). Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials, 76, 33–51.

    Article  PubMed  Google Scholar 

  20. Roam, J. L., Yan, Y., Nguyen, P. K., Kinstlinger, I. S., Leuchter, M. K., Hunter, D. A., Wood, M. D., & Elbert, D. L. (2015). A modular, plasmin-sensitive, clickable poly(ethylene glycol)-heparin-laminin microsphere system for establishing growth factor gradients in nerve guidance conduits. Biomaterials, 72, 112 – 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Georgiou, M., Golding, J. P., Loughlin, A. J., Kingham, P. J., & Phillips, J. B. (2015). Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials, 37, 242 – 51.

    Article  CAS  PubMed  Google Scholar 

  22. Hsu, S. H., Kuo, W. C., Chen, Y. T., Yen, C. T., Chen, Y. F., Chen, K. S., Huang, W. C., & Cheng, H. (2013). New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomaterialia, 9, 6606–6615.

    Article  CAS  PubMed  Google Scholar 

  23. Nichterwitz, S., Hoffmann, N., Hajosch, R., Oberhoffner, S., & Schlosshauer, B. (2010). Bioengineered glial strands for nerve regeneration. Neuroscience Letters, 484, 118 – 22.

    Article  CAS  PubMed  Google Scholar 

  24. Li, W. J., Tuli, R., Huang, X., Laquerriere, P., & Tuan, R. S. (2005). Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 26, 5158–5166.

    Article  CAS  PubMed  Google Scholar 

  25. Ribeiro-Resende, V. T., Koenig, B., Nichterwitz, S., Oberhoffner, S., & Schlosshauer, B. (2009). Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration. Biomaterials, 30, 5251–5259.

    Article  CAS  PubMed  Google Scholar 

  26. Carrier-Ruiz, A., Evaristo-Mendonça, F., Mendez-Otero, R., & Ribeiro-Resende, V. T. (2015). Biological behavior of mesenchymal stem cells on poly-ε-caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves. Stem Cell Research & Therapy, 6, 128.

    Article  CAS  Google Scholar 

  27. Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., Bae, Y. C., & Jung, J. S. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem, 14, 311 – 24.

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro-Resende, V. T., Carrier-Ruiz, A., Lemes, R. M., Reis, R. A., & Mendez-Otero, R. (2012). Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system. Molecular Neurodegeneration, 7, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silva, N. A., Moreira, J., Ribeiro-Samy, S., & Gomes, E. D. (2013). Modulation of bone marrow mesenchymal stem cell secretome by ECM-like hydrogels. Biochimie, 95, 2314–2319.

    Article  CAS  PubMed  Google Scholar 

  30. Keating, A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell, 10, 709 – 16.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., & Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41 – 9.

    Article  CAS  PubMed  Google Scholar 

  32. Muñoz-Elias, G., Marcus, A. J., Coyne, T. M., Woodbury, D., & Black, I. B. (2004). Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. Journal of Neuroscience, 24, 4585–4595.

  33. Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D. M., Nakano, Y., Meyer, E. M., Morel, L., & Petersen, B. E. (2002). Scott EW Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 416, 542–545.

    Article  CAS  PubMed  Google Scholar 

  34. Ying, Q. L., Nichols, J., Evans, E. P., & Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature, 416, 545–548.

    Article  CAS  PubMed  Google Scholar 

  35. Zeng, X., Qiu, X. C., Ma, Y. H., Duan, J. J., Chen, Y. F., Gu, H. Y., Wang, J. M., Ling, E. A., Wu, J. L., Wu, W., & Zeng, Y. S. (2015). Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials, 53, 184–201.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., Chen, J., Liu, W., Lu, X., Liu, Z., Zhao, X., Li, G., & Chen, Z. (2016). A Modified Approach to Inducing Bone Marrow Stromal Cells to Differentiate into Cells with Mature Schwann Cell Phenotypes. Stem Cells Dev, 25, 347 – 59.

    Article  PubMed  Google Scholar 

  37. Dimarino, A. M., Caplan, A. I., & Bonfield, T. L. (2013). Mesenchymal stem cells in tissue repair. Frontiers in Immunology, 4, 201.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carmeliet, P., & Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature, 436, 193–200.

    Article  CAS  PubMed  Google Scholar 

  39. Mukouyama, Y. S., Gerber, H. P., Ferrara, N., Gu, C., & Anderson, D. J. (2005). Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development, 132, 941 – 52.

    Article  CAS  PubMed  Google Scholar 

  40. Cattin, A. L., Burden, J. J., Van Emmenis, L., Mackenzie, F. E., Hoving, J. J., Garcia Calavia, N., Guo, Y., McLaughlin, M., Rosenberg, L. H., Quereda, V., Jamecna, D., Napoli, I., Parrinello, S., Enver, T., Ruhrberg, C., & Lloyd, A. C. (2015). Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell, 162, 1127–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cordeiro, I. R., Lopes, D. V., Abreu, J. G., Carneiro, K., Rossi, M. I., & Brito, J. M. (2015). Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells. Biology Open, 4, 1180–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Burkhard Schlosshauer from the NMI Reutlingen at Tübingen University for kindly donating the PCL filaments. This study was supported by grants and fellowships from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) to V.T.R.R., F.E.M., and A.C.R.; and the Instituto Nacional de Neurociências Translacional (INNT) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to V.T.R.R.

Author information

Authors and Affiliations

Authors

Contributions

FEM: performed cell and embryonic cultures, generation of in-vivo experimental model, histology procedures, fluorescent imaging, statistical analysis, interpretation of experimental results, and manuscript development and writing. ACR: Performed histology, confocal microscopy, culture procedures, interpretation of experimental results and development and writing of the manuscript. RSS: Established DRG explants culture system, contributed to the interpretation of experimental results, and manuscript development and writing. VTRR: Director of the project. Contributed to the general administration, cell culture, generation of in-vivo experimental model, histology and staining procedures, fluorescence and electron microscopy, statistical analysis, interpretation of experimental results, and manuscript development and writing. All authors read and approved the manuscript.

Corresponding author

Correspondence to V. T. Ribeiro-Resende.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 6307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evaristo-Mendonça, F., Carrier-Ruiz, A., de Siqueira-Santos, R. et al. Dual Contribution of Mesenchymal Stem Cells Employed for Tissue Engineering of Peripheral Nerves: Trophic Activity and Differentiation into Connective-Tissue Cells. Stem Cell Rev and Rep 14, 200–212 (2018). https://doi.org/10.1007/s12015-017-9786-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9786-5

Keywords

Navigation