Skip to main content

Advertisement

Log in

Immune-Related Antigens, Surface Molecules and Regulatory Factors in Human-Derived Mesenchymal Stromal Cells: The Expression and Impact of Inflammatory Priming

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

An Erratum to this article was published on 13 October 2012

Abstract

Based on their ability to regulate immune responses, MSCs are considered to be potential candidates for managing immune-mediated diseases in the context of immune therapy. AT and WJ are considered valuable alternatives for BM as a source of MSCs. A detailed and comparative characterization of the immunological profile of MSCs derived from different sources, as well as an understanding of their responsiveness under certain circumstances, such as inflammation, is required to facilitate efficient and well-designed clinical studies. Flow cytometric analyses revealed clear differences among MSC types concerning the expression of the endothelial (e.g., CD31, CD34, CD144 and CD309) and stromal (e.g., CD90 and CD105) associated markers. Regardless of their source, MSCs did not express any of the known hematopoietic markers. All MSCs were uniformly positive for HLA-ABC and lacked the expression of HLA-DR and the co-stimulatory molecules (e.g., CD40, CD80, CD86, CD134 and CD252) required for full T-cell activation. Tissue-specific MSCs presented a modulated expression of cell adhesion molecules that is important for their cellular interactions. MSCs exhibited several surface (e.g., CD73, HLA-G, HO-1 and CD274) and soluble (e.g., HGF, PGE2 and IGFBP-3) immunoregulatory molecules. According to these immunological profiles, the present work provides evidence that the source from which MSCs are derived is important for the design of MSC-based immunointervention approaches. In light of these observations, we may suggest that WJ-MSCs appear to be the most attractive cell population to use in immune cellular therapy when immunosuppressive action is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AT:

Adipose tissue

BM:

Bone marrow

MSCs:

Mesenchymal stromal cells

WJ:

Wharton’s jelly

References

  1. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.

    Article  PubMed  CAS  Google Scholar 

  2. Tondreau, T., Meuleman, N., Delforge, A., et al. (2005). Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells, 23, 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  3. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  4. Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., & Fisk, N. M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98, 2396–2402.

    Article  PubMed  CAS  Google Scholar 

  5. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  6. Keating, A. (2006). Mesenchymal stromal cells. Current Opinion in Hematology, 13, 419–425.

    Article  PubMed  Google Scholar 

  7. Arthur, A., Zannettino, A., & Gronthos, S. (2009). The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. Journal of Cellular Physiology, 218, 237–245.

    Article  PubMed  CAS  Google Scholar 

  8. Mosna, F., Sensebé, L., & Krampera, M. (2010). Human bone marrow and adipose tissue mesenchymal stem cells: a user's guide. Stem Cells and Development, 19, 1449–1470.

    Article  PubMed  CAS  Google Scholar 

  9. Fan, C. G., Zhang, Q. J., & Zhou, J. R. (2011). Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Reviews and Reports, 7, 195–207.

    Article  PubMed  Google Scholar 

  10. Marigo, I., & Dazzi, F. (2011). The immunomodulatory properties of mesenchymal stem cells. Seminars in Immunopathology, 33, 593–602.

    Article  PubMed  Google Scholar 

  11. Najar, M., Raicevic, G., Boufker, H. I., et al. (2010). Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. Cellular Immunology, 264, 171–179.

    Article  PubMed  CAS  Google Scholar 

  12. Najar, M., Raicevic, G., Boufker, H. I., et al. (2010). Adipose-tissue-derived and Wharton's jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Tissue Engineering. Part A, 16, 3537–3546.

    Article  PubMed  CAS  Google Scholar 

  13. Dazzi, F., & Krampera, M. (2011). Mesenchymal stem cells and autoimmune diseases. Best Practice & Research. Clinical Haematology, 24, 49–57.

    Article  CAS  Google Scholar 

  14. Kebriaei, P., & Robinson, S. (2011). Treatment of graft-versus-host-disease with mesenchymal stromal cells. Cytotherapy, 13, 262–268.

    Article  PubMed  Google Scholar 

  15. Tolar, J., Le Blanc, K., Keating, A., & Blazar, B. R. (2010). Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells, 28, 1446–1455.

    Article  PubMed  Google Scholar 

  16. De Bruyn, C., Najar, M., Raicevic, G., et al. (2011). A rapid, simple, and reproducible method for the isolation of mesenchymal stromal cells from Wharton's Jelly without enzymatic treatment. Stem Cells and Development, 20, 547–557.

    Article  PubMed  Google Scholar 

  17. Najar, M., Raicevic, G., Boufker, H. I., et al. (2010). Modulated expression of adhesion molecules and galectin-1: role during mesenchymal stromal cell immunoregulatory functions. Experimental Hematology, 38, 922–932.

    Article  PubMed  CAS  Google Scholar 

  18. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  PubMed  CAS  Google Scholar 

  19. Campioni, D., Rizzo, R., Stignani, M., et al. (2009). A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry. Part B, Clinical Cytometry, 76, 225–230.

    Article  PubMed  Google Scholar 

  20. Wiesmann, A., Bühring, H. J., Mentrup, C., & Wiesmann, H. P. (2006). Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head & Face Medicine, 2, 8.

    Article  Google Scholar 

  21. Jin, H. J., Park, S. K., Oh, W., Yang, Y. S., Kim, S. W., & Choi, S. J. (2009). Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 381, 676–681.

    Article  PubMed  CAS  Google Scholar 

  22. Sun, Z., Han, Q., Zhu, Y., et al. (2011). NANOG has a role in mesenchymal stem cells' immunomodulatory effect. Stem Cells and Development, 20, 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  23. Mafi, P., Hindocha, S., Mafi, R., Griffin, M., & Khan, W. S. (2011). Adult mesenchymal stem cells and cell surface characterization - a systematic review of the literature. Open Orthopaedics Journal, 5, 253–260.

    Article  Google Scholar 

  24. Szöke, K., Beckstrøm, K. J., & Brinchmann, J. E. (2012). Human adipose tissue as a source of cells with angiogenic potential. Cell Transplantation, 21, 235–250.

    PubMed  Google Scholar 

  25. Suga, H., Matsumoto, D., Eto, H., et al. (2009). Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells and Development, 18, 1201–1210.

    Article  PubMed  CAS  Google Scholar 

  26. Jersmann, H. P. (2005). Time to abandon dogma: CD14 is expressed by non-myeloid lineage cells. Immunology & Cell Biology, 83, 462–467.

    Article  CAS  Google Scholar 

  27. Yu, G., Wu, X., Dietrich, M. A., et al. (2010). Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy, 12, 538–546.

    Article  PubMed  CAS  Google Scholar 

  28. Yeh, S. P., Chang, J. G., Lo, W. J., et al. (2006). Induction of CD45 expression on bone marrow-derived mesenchymal stem cells. Leukemia, 20, 894–896.

    Article  PubMed  CAS  Google Scholar 

  29. Frauwirth, K. A., & Thompson, C. B. (2002). Activation and inhibition of lymphocytes by costimulation. Journal of Clinical Investigation, 109, 295–299.

    PubMed  CAS  Google Scholar 

  30. Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringdén, O. (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–896.

    Article  PubMed  Google Scholar 

  31. Romieu-Mourez, R., François, M., Boivin, M. N., Stagg, J., & Galipeau, J. (2007). Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. The Journal of Immunology, 179, 1549–1558.

    PubMed  CAS  Google Scholar 

  32. Briones, J., Novelli, S., & Sierra, J. (2011). T-cell costimulatory molecules in acute-graft-versus host disease: therapeutic implications. Bone Marrow Research, 2011, 976793.

    Article  PubMed  Google Scholar 

  33. de la Garza-Rodea, A. S., Verweij, M. C., Boersma, H., et al. (2011). Exploitation of herpesvirus immune evasion strategies to modify the immunogenicity of human mesenchymal stem cell transplants. PLoS One, 6, e14493.

    Article  PubMed  Google Scholar 

  34. Pachón-Peña, G., Yu, G., Tucker, A., et al. (2011). Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. Journal of Cellular Physiology, 226, 843–851.

    Article  PubMed  Google Scholar 

  35. Brooke, G., Tong, H., Levesque, J. P., & Atkinson, K. (2008). Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells and Development, 17, 929–940.

    Article  PubMed  CAS  Google Scholar 

  36. De Ugarte, D. A., Alfonso, Z., Zuk, P. A., et al. (2003). Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology Letters, 89, 267–270.

    Article  PubMed  Google Scholar 

  37. Zhu, H., Mitsuhashi, N., Klein, A., et al. (2006). The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 24, 928–935.

    Article  PubMed  CAS  Google Scholar 

  38. Zöller, M. (2011). CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nature Reviews. Cancer, 11, 254–267.

    Article  PubMed  Google Scholar 

  39. Leir, S. H., Holgate, S. T., & Lackie, P. M. (2003). Inflammatory cytokines can enhance CD44-mediated airway epithelial cell adhesion independently of CD44 expression. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L1305–L1311.

    PubMed  CAS  Google Scholar 

  40. Crop, M. J., Baan, C. C., Korevaar, S. S., et al. (2010). Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clinical and Experimental Immunology, 162, 474–486.

    Article  PubMed  CAS  Google Scholar 

  41. Götherström, C., West, A., Liden, J., Uzunel, M., Lahesmaa, R., & Le Blanc, K. (2005). Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica, 90, 1017–1026.

    PubMed  Google Scholar 

  42. Boquest, A. C., Shahdadfar, A., Frønsdal, K., et al. (2005). Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Molecular Biology of the Cell, 16, 1131–1141.

    Article  PubMed  CAS  Google Scholar 

  43. Kranz, A., Wagner, D. C., Kamprad, M., et al. (2010). Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Research, 1315, 128–136.

    Article  PubMed  CAS  Google Scholar 

  44. Alipour, R., Sadeghi, F., Hashemi-Beni, B., et al. (2010). Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells. International Journal of Preventive Medicine, 1, 164–171.

    PubMed  Google Scholar 

  45. Halfon, S., Abramov, N., Grinblat, B., & Ginis, I. (2011). Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells and Development, 20, 53–66.

    Article  PubMed  CAS  Google Scholar 

  46. Schugar, R. C., Chirieleison, S. M., Wescoe, K. E., et al. (2009). High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. Journal of Biomedicine and Biotechnology, 2009, 789526.

    Article  PubMed  Google Scholar 

  47. Haskó, G., Deitch, E. A., Szabó, C., Németh, Z. H., & Vizi, E. S. (2002). Adenosine: a potential mediator of immunosuppression in multiple organ failure. Current Opinion in Pharmacology, 2, 440–444.

    Article  PubMed  Google Scholar 

  48. Sundin, M., D'arcy, P., Johansson, C. C., et al. (2011). Multipotent mesenchymal stromal cells express FoxP3: a marker for the immunosuppressive capacity? Journal of Immunotherapy, 34, 336–342.

    Article  PubMed  CAS  Google Scholar 

  49. Niemelä, J., Henttinen, T., Yegutkin, G. G., et al. (2004). IFN-alpha induced adenosine production on the endothelium: a mechanism mediated by CD73 (ecto-5'-nucleotidase) up-regulation. The Journal of Immunology, 172, 1646–1653.

    PubMed  Google Scholar 

  50. Saldanha-Araujo, F., & Panepucci, R. A. (2011). CD39 expression in mesenchymal stromal cells. Journal of Immunotherapy, 34, 568.

    Article  PubMed  Google Scholar 

  51. Lepperdinger, G. (2011). Inflammation and mesenchymal stem cell aging. Current Opinion in Immunology, 23, 518–524.

    Article  PubMed  CAS  Google Scholar 

  52. Rizzo, R., Lanzoni, G., Stignani, M., et al. (2011). A simple method for identifying bone marrow mesenchymal stromal cells with a high immunosuppressive potential. Cytotherapy, 13, 523–527.

    Article  PubMed  CAS  Google Scholar 

  53. Avanzini, M. A., Bernardo, M. E., Cometa, A. M., et al. (2009). Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors. Haematologica, 94, 1649–1660.

    Article  PubMed  CAS  Google Scholar 

  54. Wiendl, H., Mitsdoerffer, M., Schneider, D., et al. (2003). Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. The FASEB Journal, 17, 1892–1894.

    CAS  Google Scholar 

  55. Anzalone, R., Lo Iacono, M., Loria, T., et al. (2011). Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Reviews and Reports, 7, 342–363.

    Article  PubMed  Google Scholar 

  56. Kronsteiner, B., Wolbank, S., Peterbauer, A., et al. (2011). Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells and Development, 20, 2115–2126.

    Article  PubMed  CAS  Google Scholar 

  57. Fazekasova, H., Lechler, R., Langford, K., & Lombardi, G. (2011). Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. Journal of Tissue Engineering and Regenerative Medicine, 5, 684–694.

    Article  PubMed  CAS  Google Scholar 

  58. Zarnegar, R. (1995). Regulation of HGF and HGFR gene expression. EXS, 74, 33–49.

    PubMed  CAS  Google Scholar 

  59. Grellier, P., Yee, D., Gonzalez, M., & Abboud, S. L. (1995). Characterization of insulin-like growth factor binding proteins (IGFBP) and regulation of IGFBP-4 in bone marrow stromal cells. British Journal of Haematology, 90, 249–257.

    Article  PubMed  CAS  Google Scholar 

  60. van Buul-Offers, S. C., & Kooijman, R. (1998). The role of growth hormone and insulin-like growth factors in the immune system. Cellular and Molecular Life Sciences, 54, 1083–1094.

    Article  PubMed  Google Scholar 

  61. Gieseke, F., Schütt, B., Viebahn, S., et al. (2007). Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCs independently of IFNgammaR1 signaling and IDO expression. Blood, 110, 2197–2200.

    Article  PubMed  CAS  Google Scholar 

  62. Liu, C. H., & Hwang, S. M. (2005). Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine, 32, 270–279.

    Article  PubMed  CAS  Google Scholar 

  63. Wilson, H. M., Lesnikov, V., Plymate, S. R., Ward, J., & Deeg, H. J. (2005). High IGFBP-3 levels in marrow plasma in early-stage MDS: effects on apoptosis and hemopoiesis. Leukemia, 19, 580–585.

    PubMed  CAS  Google Scholar 

  64. Chen, J., Li, J., Lim, F. C., et al. (2010). Maintenance of naïve CD8 T cells in nonagenarians by leptin, IGFBP3 and T3. Mechanisms of Ageing and Development, 131, 29–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Najar is a Télévie Scientific Research Worker of “Le Fonds National de la Recherche Scientifique” (FRS-FNRS 3.4.532.07F–7.4.524.08F). This study was also supported by BRUSTEM, an impulse program of “Institut d'encouragement de la Recherche Scientifique et de l'Innovation de Bruxelles” (IRSIB). The funding agencies did not play a role in the conduct of the research or the preparation of the manuscript; in particular, the funding agencies did not contribute to the study design, the collection, analysis and interpretation of data, the writing or the decision to submit the article.

Author Disclosure Statement

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Najar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najar, M., Raicevic, G., Kazan, H.F. et al. Immune-Related Antigens, Surface Molecules and Regulatory Factors in Human-Derived Mesenchymal Stromal Cells: The Expression and Impact of Inflammatory Priming. Stem Cell Rev and Rep 8, 1188–1198 (2012). https://doi.org/10.1007/s12015-012-9408-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9408-1

Keywords

Navigation