Skip to main content

Advertisement

Log in

Studies on the Cardio Protective Role of Gallic Acid Against AGE-Induced Cell Proliferation and Oxidative Stress in H9C2 (2-1) Cells

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Epidemiological studies have shown that high glucose levels and oxidative stress cause elevation of advanced glycation end products (AGEs) that are known to contribute to diabetic complications. Thus, agents that hamper reactive oxygen species (ROS) load can be used as a potential drug against AGEs-mediated complications. Hence, the present study investigated the protective role of gallic acid (GA) against the effects of AGEs in cardiac H9C2(2-1) cells. Exposure of cells to AGEs resulted in release of ROS (P < 0.05) with significant (P < 0.05) decline in antioxidant enzyme levels and increase in collagen (P < 0.01) content. In addition, the altered mitochondrial membrane potential (mmp) (P < 0.01) was also observed in cells exposed to AGEs, whereas AGEs-exposed cells pretreated with GA prevented the release of ROS, and there were no significant changes in the antioxidant status, collagen content and mmp. Thus, the results of the present study provide evidence that GA exhibits protective role against AGEs-induced cardiovascular complications probably through its free radical scavenging activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed, N. (2005). Advanced glycation end products role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67, 3–21.

    Article  Google Scholar 

  2. Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57, 1446–1454.

    Article  PubMed  CAS  Google Scholar 

  3. Schleicher, E., & Friess, U. (2007). Oxidative stress, AGE, and atherosclerosis. Kidney International, Supplement 106, S17–S26.

    Article  Google Scholar 

  4. Bierhaus, A., Humpert, P. M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., et al. (2005). Understanding RAGE, the receptor for advanced glycation end products. Journal of molecular medicine (Berlin, Germany), 83, 876–886.

    Article  CAS  Google Scholar 

  5. Basta, G., Schmidt, A. M., & De Caterina, R. (2004). Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovascular Research, 63, 582–592.

    Article  PubMed  CAS  Google Scholar 

  6. Farrar, J. L., Hartle, D. K., Hargrove, J. L., & Greenspan, P. (2007). Inhibition of protein glycation by skins and seeds of the muscadine grape. BioFactors, 30, 193–200.

    Article  PubMed  CAS  Google Scholar 

  7. Su-Chen, H., Szu-Pei, W., Shyh-Mirn, L., & Ya-Li, T. (2010). Comparison of anti-glycation capacities of several herbal infusions with that of green tea. Food Chemistry, 122, 768–774.

    Article  Google Scholar 

  8. Priscilla, D. H., & Prince, P. S. (2009). Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions, 179, 118–124.

    Article  PubMed  CAS  Google Scholar 

  9. Shahrzad, S., Aoyagi, K., Winter, A., Koyama, A., & Bitsch, I. (2001). Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. The Journal of Nutrition, 131, 1207–1210.

    PubMed  CAS  Google Scholar 

  10. Andreea, S. I., Marieta, C., & Anca, D. (2008). AGEs and glucose levels modulate type I and III procollagen mRNA synthesis in dermal fibroblasts cells culture. Experimental Diabetes Research, 2008, 473603.

  11. Ewing, J. F., & Janero, D. R. (1995). Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Analytical Biochemistry, 232, 243–248.

    Article  PubMed  CAS  Google Scholar 

  12. Aebi, H., Suter, H., & Feinstein, R. N. (1968). Activity and stability of catalase in blood and tissues of normal and acatalasemic mice. Biochemical Genetics, 2, 245–251.

    Article  PubMed  CAS  Google Scholar 

  13. Goldin, A., Beckman, J. A., Schmidt, A. M., & Creager, M. A. (2006). Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation, 8, 597–605.

    Article  Google Scholar 

  14. Wheeler, M. T., & McNally, E. M. (2005). The interaction of coronary tone and cardiac fibrosis. Current Atherosclerosis Reports, 7, 219–226.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14, S241–S245.

    Article  PubMed  CAS  Google Scholar 

  16. Ha, H., & Lee, H. B. (2001). Oxidative stress in diabetic nephropathy: Basic and clinical information. Current Diabetes Reports, 1, 282–287.

    Article  PubMed  CAS  Google Scholar 

  17. Franke, S., Sommer, M., Rüster, C., Bondeva, T., Marticke, J., Hofmann, G., et al. (2009). Advanced glycation end products induce cell cycle arrest and proinflammatory changes in osteoarthritic fibroblast-like synovial cells. Arthritis Research & Therapy, 11, R136.

    Article  Google Scholar 

  18. Han, H., Wang, H., Long, H., Nattel, S., & Wang, Z. (2001). Oxidative preconditioning and apoptosis in L-cells. Roles of protein kinase B and mitogen-activated protein kinases. The Journal of biological chemistry, 276, 26357–26364.

    Article  PubMed  CAS  Google Scholar 

  19. Kulisz, A., Chen, N., Chandel, N. S., Shao, Z., & Schumacker, P. T. (2002). Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. American journal of physiology. Lung cellular and molecular physiology, 282, L1324–L1329.

    PubMed  CAS  Google Scholar 

  20. Han, H., Long, H., Wang, H., Wang, J., Zhang, Y., & Wang, Z. (2004). Progressive apoptotic cell death triggered by transient oxidative insult in H9c2 rat ventricular cells: A novel pattern of apoptosis and the mechanisms. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2169–H2182.

    Article  PubMed  CAS  Google Scholar 

  21. Bashan, N., Kovsan, J., Kachko, I., Ovadia, H., & Rudich, A. (2009). Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiological Reviews, 89, 27–71.

    Article  PubMed  CAS  Google Scholar 

  22. Tsutsui, H., Kinugawa, S., & Matsushima, S. (2009). Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovascular Research, 81, 449–456.

    Article  PubMed  CAS  Google Scholar 

  23. Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology, 29, 4–5.

    Google Scholar 

  24. Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43, 289–330.

    Article  PubMed  CAS  Google Scholar 

  25. Kuppan, G., Balasubramanyam, J., Monickaraj, F., Srinivasan, G., Mohan, V., & Balasubramanyam, M. (2010). Transcriptional regulation of cytokines and oxidative stress by gallic acid in human THP-1 monocytes. Cytokine, 49, 229–234.

    Article  PubMed  CAS  Google Scholar 

  26. Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterization of cardiac fibroblasts. Cardiovascular Research, 65, 40–51.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, K., Chen, J., Li, D., Zhang, X., & Mehta, J. L. (2004). Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: Modulation by PPAR-gamma ligand pioglitazone. Hypertension, 44, 655–661.

    Article  PubMed  CAS  Google Scholar 

  28. Thallas-Bonke, V., Thorpe, S. R., Coughlan, M. T., Fukami, K., Yap, F. Y., Sourris, K. C., et al. (2008). Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes, 57, 460–469.

    Article  PubMed  CAS  Google Scholar 

  29. Li, Y. Y., Feng, Y., McTiernan, C. F., Pei, W., Moravec, C. S., Wang, P., et al. (2001). Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation, 104, 1147–1152.

    Article  PubMed  CAS  Google Scholar 

  30. Lijnen, P., Papparella, I., Petrov, V., Semplicini, A., & Fagard, R. (2006). Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. Journal of Hypertension, 24, 757–766.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by UGC, JNMF and CSIR, New Delhi, India.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Elangovan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umadevi, S., Gopi, V., Simna, S.P. et al. Studies on the Cardio Protective Role of Gallic Acid Against AGE-Induced Cell Proliferation and Oxidative Stress in H9C2 (2-1) Cells. Cardiovasc Toxicol 12, 304–311 (2012). https://doi.org/10.1007/s12012-012-9170-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-012-9170-2

Keywords

Navigation