Skip to main content
Log in

Effect of Dietary Vanadium on the Ileac T Cells and Contents of Cytokines in Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this 42-day study was to examine the effect of dietary vanadium on the ileac T cells and contents of cytokines including interleukin-2 (IL-2), interleukin-6 (IL-6), and interferon-gamma (IFN-γ) in broilers by flow cytometry and enzyme-linked immunosorbent assay. A total of 420 one-day-old avian broilers were divided into six groups (seven replicates in each group and ten broilers in each replicate) and fed on control diet or the same diet supplemented with 5, 15, 30, 45, and 60 mg/kg vanadium in the form of ammonium metavanadate. The results showed that the percentages of CD3+, CD3+CD4+, and CD3+CD8+ T cells in both ileac lamina propria lymphocytes (LPLs) and intraepithelial lymphocytes (IELs) were significantly lower (P < 0.05 or P < 0.01) in the 45- and 60-mg/kg groups than in the control group from 14 to 42 days of age. The CD4+/CD8+ ratio was increased in ileac LPLs in the 60-mg/kg group at 28 days of age, and in ileac IELs in the 60-mg/kg group at 28 days of age and in the 45-mg/kg group at 42 days of age. Meanwhile, the ileac IL-2, IL-6 contents were decreased (P < 0.05 or P < 0.01) in the 60-mg/kg group from 14 to 42 days of age and in the 45-mg/kg group from 28 to 42 days of age in comparison with those of the control group. It was concluded that dietary vanadium in excess of 30 mg/kg reduced the ileac T cell population and percentages of T cell subsets, and IL-2, IL-6, and IFN-γ contents, implying that the immune function of local intestinal mucosa in broilers could be affected by the dietary vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Domingo JL (1996) Vanadium: a review of the reproductive and developmental toxicity. Reprod Toxicol 10(3):175–182

    Article  PubMed  CAS  Google Scholar 

  2. Rehder D (2003) Biological and medicinal aspects of vanadium. Inorganic Chem Commun 6:604–617

    Article  CAS  Google Scholar 

  3. Nielsen FH (1990) New essential trace elements for the life sciences. Biol Trace Elem Res 26–27(1):599–611

    Article  PubMed  Google Scholar 

  4. Duckworth WC, Solomon SS, Liepnieks J et al (1998) Insulin-like effects of vanadium in isolated rat adipocytes. Endoerinology 122:2285–2289

    Article  Google Scholar 

  5. Madsen KL, Arisno D, Fedorak RN et al (1995) Vanadate treatment rapidly improves glucose transport and activates 6-phosphofructo-l-kinase in diabetic rat intestine. Diabetologia 38(4):403–412

    Article  PubMed  CAS  Google Scholar 

  6. Domingo JL (2002) Vanadium and tungsten derivatives as antidiabetic agents. Biol Trace Elem Res 88(2):97–112

    Article  PubMed  CAS  Google Scholar 

  7. Mukherjee B (2004) Vanadium—an element of atypical biological significance. Toxicol Lett 150:135–143

    Article  PubMed  CAS  Google Scholar 

  8. Beagley KW, Fujihashi K et al (1995) Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. Immunology 154:5611–5619

    CAS  Google Scholar 

  9. Wijk F, Cheroutre H (2009) Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Semin Immunol 21:130–138

    Article  PubMed  Google Scholar 

  10. Poucheret P, Verma S, Grynpas MD, McNeill JH (1998) Vanadium and diabetes. Mol Cell Biochem 188:73–80

    Article  PubMed  CAS  Google Scholar 

  11. Iji PA, Saki AA, Tivey DR (2001) Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Animal Feed Sci Technol 89(3–4):175–188

    Article  CAS  Google Scholar 

  12. Katriina H, Shah E et al (2008) Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 44:937–945

    Article  Google Scholar 

  13. Conrad A (2003) Interleukin-2: where are we going? J Assoc Nurses AIDS Care 14:83–88

    Article  PubMed  Google Scholar 

  14. Oliver D, Mercedes R (2009) The effects of IL-6 on CD4 T cell responses. Clin Immunol 130:27–33

    Article  Google Scholar 

  15. Kate S, Paul JH (2004) Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189

    Google Scholar 

  16. Cui W, Cui H, Peng X et al (2011) Excess dietary vanadium induces the changes of subets and proliferation of splenic T cells in broilers. Biol Trace Elem Res 143:932–938

    Article  PubMed  CAS  Google Scholar 

  17. Cui W, Cui H, Peng X et al (2011) Effect of vanadium on the subset and proliferation of peripheral blood T-cell, and serum IL-2 content in broilers. Biol Trace Elem Res 141:192–199

    Article  PubMed  CAS  Google Scholar 

  18. Cui W, Cui H, Peng X et al (2011) Excess dietary vanadium induces lesions and changes of cell cycle of spleen in broilers. Biol Trace Elem Res 143:949–956

    Article  PubMed  CAS  Google Scholar 

  19. Cui W, Cui H, Peng X et al (2011) Changes of relative weight and cell cycle, and lesions of bursa of Fabricius induced by dietary excess vanadium in broilers. Biol Trace Elem Res 143:251–260

    Article  PubMed  CAS  Google Scholar 

  20. Deng Y, Cui H, Peng X et al (2011) Effect of dietary vanadium on cecal tonsil T cell subsets and IL-2 contents in broilers. Biol Trace Elem Res. doi:10.1007/s12011-010-9018-9

  21. Montufar-Solis D, Klein JR (2006) An improved method for isolating intraepithelial lymphocytes (IELs) from the murine small intestine with consistently high purity. J Immunol Methods 308:251–254

    Article  PubMed  CAS  Google Scholar 

  22. Todd D, Singh AJ (1999) A new isolation method for rat intraepithelial lymphocytes. J Immunol Methods 224:111–127

    Article  PubMed  CAS  Google Scholar 

  23. Resèndiz-Albor AA, Esquivel R et al (2005) Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci 76:2783–2803

    Article  PubMed  Google Scholar 

  24. Gaca MD, Pickering JA et al (1999) Human and rat hepatic stellate cells produce stem cell factor: a possible mechanism for mast cell recruitment in liver fibrosis. J Hepatol 30:850–860

    Article  PubMed  CAS  Google Scholar 

  25. Acheson DWK, Luccioli S (2004) Mucosal immune responses. Best Pract Res Clin Gastroenterol 18(2):387–404

    Article  PubMed  CAS  Google Scholar 

  26. Lillehoj HS, Chung KS (1992) Postnatal development of tlymphocyte subpopulations in the intestinal intraepithelium and lamina propria in chickens. Vet Immunol Immunopathol 31:347–360

    Article  PubMed  CAS  Google Scholar 

  27. Lillehoj HS, Trout JM (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev 9:349–360

    PubMed  CAS  Google Scholar 

  28. Chen T, Cui Y, Bai C, Gong T, Peng X, Cui H (2009) Decreased percentages of the peripheral blood T-cell subsets and the serum IL-2 contents in chickens fed on diets excess in fluorine. Biol Trace Elem Res 132:122–128

    Article  PubMed  CAS  Google Scholar 

  29. Kannangai R, Prakash KJ et al (2000) Peripheral CD4+/CD8+ T-lymphocyte counts estimated by an immunocapture method in the normal healthy south Indian adults and HIV seropositive individuals. J Clin Virol 17(2):101–108

    Article  PubMed  CAS  Google Scholar 

  30. Jesús H, Yonathan G (2001) Comparative evaluation of the CD4+CD8+ and CD4+CD8 lymphocytes in the immune response to porcine rubulavirus. Vet Immunol Immunopathol 79(3–4):249–259

    Google Scholar 

  31. Czesnikiewicz-Guzik M, Lee W et al (2008) T cell subset-specific susceptibility to aging. Clin Immunol 127:107–118

    Article  PubMed  CAS  Google Scholar 

  32. Magd AK, Ahmed EH et al (2005) Immune-mediated liver injury: prognostic value of CD4+, CD8+, and CD68+ in infants with extrahepatic biliary atresia. J Pediatr Surg 40(8):1252–1257

    Article  Google Scholar 

  33. Ulrike H, Hananske AR, Martha HM et al (1987) Biphasic effect of vanadium salts on in vitro tumor colony growth. Int J Cell Cloning 5(2):170–178

    Article  Google Scholar 

  34. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status. Br J Nutr 87:383–403

    Article  Google Scholar 

  35. Lan RY, Selmi C (2008) The regulatory, inflammatory, and T cell programming roles of interleukin-2 (IL-2). J Autoimmun 31:7–12

    Article  PubMed  CAS  Google Scholar 

  36. Matsuda T, Suematsu S, Kawano M et al (1989) IL-6yBSF2 in normal and abnormal regulation of immune responses. Ann N Y Acad Sci 557:466–476

    Article  PubMed  CAS  Google Scholar 

  37. Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8(suppl 2):S2

    Article  PubMed  Google Scholar 

  38. Rochman I, Paul WE, Ben-Sasson SZ (2005) IL-6 increases primed cell expansion and survival. J Immunol 174:4761–4767

    PubMed  CAS  Google Scholar 

  39. Longhi MP, Wright K, Lauder SN, Nowell MA, Jones GW, Godkin AJ, Jones SA, Gallimore AM (2008) Interleukin-6 is crucial for recall of influenza-specific memory CD4 T cells. PLoS Pathog 4:e1000006

    Article  PubMed  Google Scholar 

  40. Esteves I, Walravens K et al (2004) Protective killed Ehrlichia ruminantium vaccine elicits IFN-γ responses by CD4+ and CD8+ T lymphocytes in goats. Vet Immunol Immunopathol 98:49–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the program for Changjiang Scholars and Innovative Research Team in University (IRT 0848) and the Education Department and Scientific Department of Sichuan Province (09ZZ017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengmin Cui.

Additional information

Kangping Wang and Yuanxin Deng contributed equally to this work and are considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Cui, H., Deng, Y. et al. Effect of Dietary Vanadium on the Ileac T Cells and Contents of Cytokines in Broilers. Biol Trace Elem Res 147, 113–119 (2012). https://doi.org/10.1007/s12011-011-9274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9274-8

Keywords

Navigation