Skip to main content
Log in

Bioproduction of d-Tagatose from d-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with d-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the d-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for d-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM d-tagatose from 1000 mM of d-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various l-arabinose isomerases have been characterized for bioproduction of d-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other l-arabinose isomerases by its optimal temperature (60 °C) for d-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. EL, H., L, H., & JKN, J. (1949). Composition of the gum of Sterculia setigera: occurrence of d-tagatose in nature. Nature, 163, 177.

    Google Scholar 

  2. Adachi, S. (1958). Formation of lactulose and tagatose from lactose in strongly heated milk. Nature Group, 181, 840–841.

    Article  CAS  Google Scholar 

  3. Livesey, G. (2001). Tolerance of low-digestible carbohydrates: a general view. British Journal of Nutrition, 85(Suppl. 1), S7–S16.

    Article  CAS  Google Scholar 

  4. Livesey, G., & Brown, J. C. (1996). d-tagatose is a bulk sweetener with zero energy determined in rats. The Journal of Nutrition, 126(6), 1601–1609.

    CAS  Google Scholar 

  5. Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food, 5, 23–36.

    Article  CAS  Google Scholar 

  6. Levin, G. V., Zelmer, L. R., Saunders, J. P., & Beadle, J. R. (1995). Sugar substitutes : their energy values, and potential health bulk characteristics. American Society for Clinical Nutrition, 62, 1161–1168.

    Google Scholar 

  7. Donner, T. W., Magder, L. S., & Zarbalian, K. (2010). Dietary supplementation with d-tagatose in subjects with type 2 diabetes leads to weight loss and raises high-density lipoprotein cholesterol ☆. Nutrition Research, 30(12), 801–806. doi:10.1016/j.nutres.2010.09.007.

    Article  CAS  Google Scholar 

  8. Kim, P. (2004). Current studies on biological tagatose production using l-arabinose isomerase: a review and future perspective. Applied Microbiology and Biotechnology, 65(3), 243–249. doi:10.1007/s00253-004-1665-8.

    CAS  Google Scholar 

  9. Beadle, J.R., Saunder, J.P. & Wajada, T. J. (1992). Process for manufacturing tagatose. WO Patent 92/12263.

  10. Izumori, K., Miyoshi, T., Tokuda, S., & Yamabe, K. (1984). Production of d-tagatose from dulcitol by Arthrobacter globiformis. Applied and Environmental Microbiology, 48(5), 1055–1057.

    CAS  Google Scholar 

  11. Izumori, K., & Tsuzaki, K. (1988). Production of d-tagatose from d-galactitol by Mycobacterium smegmatis. Journal of Fermentation Technology, 66(2), 225–227. doi:10.1016/0385-6380(88)90052-0.

    Article  CAS  Google Scholar 

  12. Muniruzzaman, S., Tokunaga, H., & Izumori, K. (1994). Isolation of Enterobacter agglomerans strain 221e from soil, a potent d-tagatose producer from galactitol. Journal of Fermentation and Bioengineering, 78(2), 145–148. doi:10.1016/0922-338X(94)90253-4.

    Article  CAS  Google Scholar 

  13. Manzoni, M., Rollini, M., & Bergomi, S. (2001). Biotransformation of d-galactitol to tagatose by acetic acid bacteria. Process Biochemistry, 36, 971–977.

    Article  CAS  Google Scholar 

  14. Granström, T. B., Takata, G., Tokuda, M., & Izumori, K. (2004). Izumoring: a novel and complete strategy for bioproduction of rare sugars. Journal of Bioscience and Bioengineering, 97(2), 89–94. doi:10.1263/jbb.97.89.

    Article  Google Scholar 

  15. Cheetham, P. S. J., & Wootton, A. N. (1993). Bioconversion of d-galactose into d-tagatose. Enzyme and Microbial Technology, 15(2), 105–108. doi:10.1016/0141-0229(93)90032-W.

    Article  CAS  Google Scholar 

  16. Roh, H. J., Kim, P., Park, Y. C., & Choi, J. H. (2000). Bioconversion of d-galactose into d-tagatose by expression of l-arabinose isomerase. Biotechnology and applied biochemistry, 31 (Pt 1), 1–4. doi:10669396

  17. Kim, P., Yoon, S. H., Roh, H. J., & Choi, J. H. (2001). High production of d-tagatose, a potential sugar substitute, using immobilized l-arabinose isomerase. Biotechnology Progress, 17(1), 208–210. doi:10.1021/bp000147u.

    Article  CAS  Google Scholar 

  18. Yoon, S., Kim, P., & Oh, D. K. (2003). Properties of l-arabinose isomerase from Escherichia coli as a biocatalyst for d-tagatose production, 47–51.

  19. Zhang, H., Jiang, B., & Pan, B. (2007). Purification and characterization of l-arabinose isomerase from Lactobacillus plantarum producing d-tagatose. World Journal of Microbiology and Biotechnology, 23(5), 641–646. doi:10.1007/s11274-006-9274-6.

    Article  CAS  Google Scholar 

  20. Kim, H. J., & Oh, D. K. (2005). Purification and characterization of an l-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing d-tagatose. Journal of Biotechnology, 120(2), 162–173. doi:10.1016/j.jbiotec.2005.06.004.

    Article  CAS  Google Scholar 

  21. Li, Y., Zhu, Y., Liu, A., & Sun, Y. (2011). Identification and characterization of a novel l-arabinose isomerase from Anoxybacillus flavithermus useful in d-tagatose production. Extremophiles, 15(3), 441–450. doi:10.1007/s00792-011-0375-2.

    Article  Google Scholar 

  22. Kim, J. W., Kim, Y. W., Roh, H. J., Kim, H. Y., Cha, J. H., Park, K. H., & Park, C. S. (2003). Production of tagatose by a recombinant thermostable l-arabinose isomerase from Thermus sp. IM6501. Biotechnology Letters, 25(12), 963–967. doi:10.1023/A:1024069813839.

    Article  CAS  Google Scholar 

  23. Jørgensen, F., Hansen, O. C., & Stougaard, P. (2004). Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterisation of a thermostable l-arabinose isomerase from Thermoanaerobacter mathranii. Applied Microbiology and Biotechnology, 64(6), 816–822. doi:10.1007/s00253-004-1578-6.

    Article  Google Scholar 

  24. Kim, B. C., Lee, Y. H., Lee, H. S., Lee, D. W., Choe, E. A., & Pyun, Y. R. (2002). Cloning, expression and characterization of l-arabinose isomerase from Thermotoga neapolitana: bioconversion of d-galactose to d-tagatose using the enzyme. FEMS Microbiology Letters, 212(1), 121–126. doi:10.1016/S0378-1097(02)00715-2.

    CAS  Google Scholar 

  25. Beerens, K., Desmet, T., & Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology and Biotechnology, 39(6), 823–834. doi:10.1007/s10295-012-1089-x.

    Article  CAS  Google Scholar 

  26. Yeom, S. J., Kim, Y. S., & Oh, D. K. (2013). Development of novel sugar isomerases by optimization of active sites in phosphosugar isomerases for monosaccharides. Applied and Environmental Microbiology, 79(3), 982–988. doi:10.1128/AEM.02539-12.

    Article  CAS  Google Scholar 

  27. Yeom, S. J., Ji, J. H., Kim, N. H., Park, C. S., & Oh, D. K. (2009). Substrate specificity of a mannose-6-phosphate isomerase from bacillus subtilis and its application in the production of l-ribose. Applied and Environmental Microbiology, 75(14), 4705–4710. doi:10.1128/AEM.00310-09.

    Article  CAS  Google Scholar 

  28. Park, C. S., Yeom, S. J., Kim, H. J., Lee, S. H., Lee, J. K., Kim, S. W., & Oh, D. K. (2007). Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing d-allose from d-psicose. Biotechnology Letters, 29(9), 1387–1391. doi:10.1007/s10529-007-9393-7.

    Article  CAS  Google Scholar 

  29. Park, H. Y., Park, C. S., Kim, H. J., & Oh, D. K. (2007). Substrate specificity of a galactose 6-phosphate isomerase from Lactococcus lactis that produces d-allose from d-psicose. Journal of Biotechnology, 132(1), 88–95. doi:10.1016/j.jbiotec.2007.08.022.

    Article  CAS  Google Scholar 

  30. Swan, M. K., Hansen, T., Schönheit, P., & Davies, C. (2004). A novel phosphoglucose isomerase (PGI)/phosphomannose isomerase from the crenarchaeon Pyrobaculum aerophilum is a member of the PGI superfamily. Structural evidence at 1.16-Å resolution. Journal of Biological Chemistry, 279(38), 39838–39845. doi:10.1074/jbc.M406855200.

    Article  CAS  Google Scholar 

  31. Sambrook, J. R. D. (2001). In Molecular cloning: a laboratory manual (3rd ed.). NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  32. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  33. Kulka, R. G. (1956). Colorimetric estimation of ketopentoses and ketohexoses. The Biochemical Journal, 63(4), 542–548.

    Article  CAS  Google Scholar 

  34. Lutz*, S., Joseph, L., & L, L. (2008). Exploiting temperature-dependent substrate promiscuity for nucleoside analog activation by thymidine kinase from Thermotoga maritima. Journal of the American Chemical Society, 129(28), 8714–8715.

    Article  Google Scholar 

  35. Staudigl, P., Haltrich, D., & Peterbauer, C. K. (2014). l-arabinose isomerase and l-arabinose isomerase and d-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of d-galactose and d-glucose. doi:10.1021/jf404785m

  36. Kim, H., Ryu, S., Kim, P., & Oh, D. (2003). A feasible enzymatic process for d-tagatose production by an immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor, 400–404. doi:10.1021/bp025675f

  37. Oh, D. K. (2007). Tagatose: properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76(1), 1–8. doi:10.1007/s00253-007-0981-1.

    Article  CAS  Google Scholar 

  38. Banerjee, S., Anderson, F., & Farber, G. K. (1995). The evolution of sugar isomerases. Protein Engineering, 8(12), 1189–1195. doi:10.1093/protein/8.12.1189.

    Article  CAS  Google Scholar 

  39. Jogl, G., Rozovsky, S., McDermott, A. E., & Tong, L. (2003). Optimal alignment for enzymatic proton transfer: structure of the Michaelis complex of triosephosphate isomerase at 1.2-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 50–55. doi:10.1073/pnas.0233793100.

    Article  Google Scholar 

  40. Zhang, R. G., Andersson, C. E., Savchenko, A., Skarina, T., Evdokimova, E., Beasley, S., & Mowbray, S. L. (2003). Structure of Escherichia coli ribose-5-phosphate isomerase: a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle. Structure, 11(1), 31–42. doi:10.1016/S0969-2126(02)00933-4.

    Article  CAS  Google Scholar 

  41. Hansen, T., Schlichting, B., Felgendreher, M., & Schönheit, P. (2005). Cupin-type phosphoglucose isomerases (Cupin-PGIs) constitute a novel metal-dependent PGI family representing a convergent line of PGI evolution. Journal of Bacteriology, 187(5), 1621–1631. doi:10.1128/JB.187.5.1621-1631.2005.

    Article  CAS  Google Scholar 

  42. Teplyakov, A., Obmolova, G., Badet-Denisot, M. A., & Badet, B. (1999). The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase. Protein science : A publication of the Protein Society, 8(3), 596–602. doi:10.1110/ps.8.3.596.

    Article  CAS  Google Scholar 

  43. Lee, D. W., Choe, E. A., Kim, S. B., Eom, S. H., Hong, Y. H., Lee, S. J., & Pyun, Y. R. (2005). Distinct metal dependence for catalytic and structural functions in the l-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Archives of Biochemistry and Biophysics, 434(2), 333–343. doi:10.1016/j.abb.2004.11.004.

    Article  CAS  Google Scholar 

  44. Prabhu, P., Doan, T.-N.-T., Tiwari, M., Singh, R., Kim, S. C., Hong, M.-K., & Lee, J.-K. (2014). Structure-based studies on the metal binding of two-metal-dependent sugar isomerases. FEBS Journal, 281(15), 3446–3459. doi:10.1111/febs.12872.

    Article  CAS  Google Scholar 

  45. Van Tilbeurgh, H., Jenkins, J., Chiadmi, M., Janin, J., Wodak, S. J., Mrabet, N. T., & Lambeir, A. M. (1992). Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site- directed mutagenesis. Biochemistry, 31(24), 5467–5471. doi:10.1021/bi00139a007.

    Article  Google Scholar 

  46. Roux, C., Lee, J. H., Jeffery, C. J., & Salmon, L. (2004). Inhibition of type I and type II phosphomannose isomerases by the reaction intermediate analogue 5-phospho-d-arabinonohydroxamic acid supports a catalytic role for the metal cofactor. Biochemistry, 43(10), 2926–2934. doi:10.1021/bi035688h.

    Article  CAS  Google Scholar 

  47. Noltmann, A. E., & Gracy, W. R. (1968). A mechanism for catalysis and for the role of zinc in the enzymatic and the nonenzymatic isomerization*. The Journal of Biological Chemistry, 243(20), 5410–5419.

    Google Scholar 

  48. Yoon, R. Y., Yeom, S. J., Park, C. S., & Oh, D. K. (2009). Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides. Applied Microbiology and Biotechnology, 83(2), 295–303. doi:10.1007/s00253-009-1859-1.

    Article  CAS  Google Scholar 

  49. Wurth, C., Kessler, U., & Vogt, J. (2001). The effect of substrate binding on the conformation and structural stability of Herpes simplex virus type 1 thymidine kinase. Protein, 10(1), 63–73. doi:10.1110/ps.27401.Thymidine.

    Article  CAS  Google Scholar 

  50. Yeom, S. J., Kim, B. N., Park, C. S., & Oh, D. K. (2010). Substrate specificity of ribose-5-phosphate isomerases from Clostridium difficile and Thermotoga maritima. Biotechnology Letters, 32(6), 829–835. doi:10.1007/s10529-010-0224-x.

    Article  CAS  Google Scholar 

  51. Yoon, R. Y., Yeom, S. J., Kim, H. J., & Oh, D. K. (2009). Novel substrates of a ribose-5-phosphate isomerase from Clostridium thermocellum. Journal of Biotechnology, 139(1), 26–32. doi:10.1016/j.jbiotec.2008.09.012.

    Article  CAS  Google Scholar 

  52. Prabhu, P., Kumar Tiwari, M., Jeya, M., Gunasekaran, P., Kim, I. W., & Lee, J. K. (2008). Cloning and characterization of a novel l-arabinose isomerase from Bacillus licheniformis. Applied Microbiology and Biotechnology, 81(2), 283–290. doi:10.1007/s00253-008-1652-6.

    Article  CAS  Google Scholar 

  53. Kim, J. H., Prabhu, P., Jeya, M., Tiwari, M. K., Moon, H. J., Singh, R. K., & Lee, J. K. (2010). Characterization of an l-arabinose isomerase from Bacillus subtilis. Applied Microbiology and Biotechnology, 85(6), 1839–1847. doi:10.1007/s00253-009-2210-6.

    Article  CAS  Google Scholar 

  54. Yoon, S. H., Kim, P., & Oh, D. K. (2003). Properties of l-arabinose isomerase from Escherichia coli as biocatalyst for tagatose production. World Journal of Microbiology and Biotechnology, 19(1), 47–51. doi:10.1023/A:1022575601492.

    Article  CAS  Google Scholar 

  55. Ryu, S., Kim, C.-S., Kim, H.-J., Baek, D.-K., & Oh, D. (2003). Continuous d-tagatose production by an immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor, 1643–1647. doi:10.1021/bp025675f

  56. Leang, K., Takada, G., Fukai, Y., Morimoto, K., Granström, T. B., & Izumori, K. (2004). Novel reactions of l-rhamnose isomerase from Pseudomonas stutzeri and its relation with d-xylose isomerase via substrate specificity. Biochimica et Biophysica Acta - General Subjects, 1674(1), 68–77. doi:10.1016/j.bbagen.2004.06.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshan H. Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.J., Patel, A.T., Akhani, R. et al. Bioproduction of d-Tagatose from d-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1. Appl Biochem Biotechnol 179, 715–727 (2016). https://doi.org/10.1007/s12010-016-2026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2026-7

Keywords

Navigation