Skip to main content
Log in

Ethanol Production from Residual Wood Chips of Cellulose Industry: Acid Pretreatment Investigation, Hemicellulosic Hydrolysate Fermentation, and Remaining Solid Fraction Fermentation by SSF Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0–4.0 v/v) and solid to liquid ratio (1:2–1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pereira, N., Jr., Couto, M. A. P. G., & Santa Anna, L. M. M. (2008). Series on biotechnology: biomass of lignocellulosic composition for fuel ethanol production and the context f biorefinery. Amiga Digital UFRJ, Rio de Janeiro, 2:45.

  2. Vásquez, M. P., Silva, J. N. C., Souza, M. B., Jr., & Pereira, N., Jr. (2007). Enzymatic hydrolysis optimization to ethanol production by Simultaneous Saccharification and Fermentation. Applied Biochemistry and Biotechnology, 136, 141–154.

    Article  Google Scholar 

  3. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  Google Scholar 

  4. Fogel, R., Garcia, R. R., Oliveira, R. S., Palacio, D. N. M., Madeira, L. S., & Pereira, N., Jr. (2005). Otimization of acid hydrolysis of surgacane bagasse and investigations on its fermentability for the production of xylitol by Candida guilliermondii. Applied Biochemistry and Biotechnology, 121, 741–752.

    Article  Google Scholar 

  5. Alriksson, B., Sjöde, A., Nilvebrant, N., & Jönsson, L. J. (2006). Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Applied Biochemistry and Biotechnology, 129–132, 599–611.

    Article  Google Scholar 

  6. Pan, X., Xie, D., Gilkes, N., Gregg, D. J., & Saddler, N. J. (2005). Strategies to enhance the enzymetic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology, 121–124, 1069–1079.

    Article  Google Scholar 

  7. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  8. Cao, Y., & Tan, H. (2004). Structural characterization of cellulose with enzymatic treatment. Journal of Molecular Structure, 705, 189–193.

    Article  CAS  Google Scholar 

  9. Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56, 1–24.

    Article  CAS  Google Scholar 

  10. Betancur, G. J. V. (2005). Advances in biotechnology of hemicellulose to ethanol production by Pichia stipitis. Msc Thesis. School of chemistry. Federal University of Rio de Janeiro.

  11. Santa Anna, L. M., Pereira, N., Jr., Betancur, G. J. V., Bevilaqua, J. V., Gomes, A. C., & Menezes, E. P. (2005). Ethanol production process from hemicellulose hydrolysate of sugarcane bagasse within hydraulic press equipment. patent pi 0505299–9.

  12. Pereira, N., Jr. (1991). Investigation of D-xylose fermenting yeast. Ph.D. Thesis. Department of Chemistry. The University of Manchester, U.K.

  13. Montgomery, D., & Calado, V. (2003). Experimental design using the Statistic. Editorial E-papers Serviços editoriais, Rio de Janeiro. Brasil.

  14. Parekh, S. R., & Wyman, M. (1986). Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysate for increased ethanol production. Applied Microbiology and Biotechnology, 25, 300–304.

    Article  CAS  Google Scholar 

  15. Nigam, J. N. (2001). Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. Journal of Industrial Microbiology & Biotechnology, 26, 145–150.

    Article  CAS  Google Scholar 

  16. Ballesteros, I., Negro, M. J., Oliva, J. M., Cabañas, A., Manzanares, P., & Ballesteros, M. (2006). Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 129–132, 496–508.

    Article  Google Scholar 

  17. Ruiz, E., Cara, C., Ballesteros, M., Manzanares, P., Ballesteros, I., & Castro, E. (2006). Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process. Applied Biochemistry and Biotechnology, 129–132, 631–643.

    Article  Google Scholar 

  18. Wingren, A., Galber, M., Roslander, C., Rudolf, A., & Zacchi, G. (2005). Effect of reduction in yeast and enzyme concentrations in a SSF based bioethanol process. Applied Biochemistry and Biotechnology, 121–124, 485–499.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to the Brazilian Council for Research (CNPq), the Rio de Janeiro State Foundation for Science & Technology (FAPERJ), and the Brazilian Oil Company (PETROBRAS) for grants and other financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nei Pereira Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, N.L.C., Betancur, G.J.V., Vasquez, M.P. et al. Ethanol Production from Residual Wood Chips of Cellulose Industry: Acid Pretreatment Investigation, Hemicellulosic Hydrolysate Fermentation, and Remaining Solid Fraction Fermentation by SSF Process. Appl Biochem Biotechnol 163, 928–936 (2011). https://doi.org/10.1007/s12010-010-9096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9096-8

Keywords

Navigation