Skip to main content
Log in

Thermodynamic Feasibility of Enzymatic Reduction of Carbon Dioxide to Methanol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of valuable chemicals from CO2 is highly desired for the purpose of controlling CO2 emission. Toward that, enzymatic reduction of CO2 for the production of methanol appeared to be especially promising. That has been achieved by reversing the biological metabolic reaction pathways. However, hitherto, there has been little discussion on the thermodynamic feasibility of reversing such biological pathways. The reported yields of methanol have been generally very low under regular reaction conditions preferred by naturally evolved enzymes. The current work examines the sequential enzymatic conversion of CO2 into methanol from a thermodynamic point of view with a focus on factors that control the reaction equilibrium. Our analysis showed that the enzymatic conversion of carbon dioxide is highly sensitive to the pH value of the reaction solution and, by conducting the reactions at low pHs (such as pH 6 or 5) and ionic strength, it is possible to shift the biological methanol metabolic reaction equilibrium constants significantly (by a factor of several orders of magnitude) to favor the synthesis of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Seifritz, W. (1990). CO2 disposal by means of silicates. Nature, 345, 486.

    Article  Google Scholar 

  2. Chiesa, P., Kreutz, T. G., & Lozza, G. G. (2007). CO2 sequestration from IGCC power plants by means of metallic membranes. Journal of Engineering Gas Turbines and Power, 129(1), 123–134.

    Article  CAS  Google Scholar 

  3. Dziedzic, D., Gross, K. B., Gorski, R. A., & Johnson, J. T. (2006). Feasibility study of using brine for carbon dioxide capture and storage from fixed sources. Journal of the Air & Waste Management Association, 56(12), 1631–1641.

    CAS  Google Scholar 

  4. Song, C. S. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115(1–4), 2–32.

    Article  CAS  Google Scholar 

  5. Saveant, J. M. (2008). Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chemical Review, 108(7), 2348–2378.

    Article  CAS  Google Scholar 

  6. Cowan, R. M., Ge, J. J., Qin, Y. J., McGregor M. L., & Trachtenberg, M. C. (2003). CO2 capture by means of an enzyme-based reactor. Annals of the New York Academy of Sciences, 984(1), 453–469.

    Article  CAS  Google Scholar 

  7. Liu, N., Bond, G. M., Abel, A. McPherson, B. J., & Stringer, J. (2005). Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines. Fuel Processing Technology, 86(14–15), 1615–1625.

    Article  CAS  Google Scholar 

  8. Mirjafari, P., Asghari, K., & Mahinpey, N. (2007). Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial & Engineering Chemistry Research, 46(3), 921–926.

    Article  CAS  Google Scholar 

  9. Trachtenberg, C., Cowan, R. M., Goldman, S. L., Ge, J. J., Qin, Y. J., McGregor, M. L., Tu, C. K. (2003). Enzyme based membrane reactor for CO 2 capture. Proceedings of the 33nd International Conference on Environmental Systems, SAE, Vancouver, p. 2499.

  10. Takeuchi, K. (2002). Impacts of CO 2 on microbial communities in a mesocosm experiment. In J. Gale, & Y. Kaya (Eds.), Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Elsevier, Kyoto, pp. 849–854.

  11. Prudnikova, O. Y., Makarova, O. V., & Yurieva, T. M. (1980). Active state of copper in catalysts for low-temperature methanol synthesis. Reaction Kinetics and Catalysis Letters, 14(4), 413–416.

    Article  CAS  Google Scholar 

  12. Lachowska, M., & Skrzypek, J. (2004). Methanol synthesis from carbon dioxide and hydrogen over Mn-promoted copper/zinc/zirconia catalysts. Reaction Kinetics and Catalysis Letters, 83(2), 269–273.

    Article  CAS  Google Scholar 

  13. Liu, X.-M., Lu, G. Q., & Yan, Z.-F. (2005). Nanocrystalline zirconia as catalyst support in methanol synthesis. Applied Catalysis A, 279(1–2), 241–245.

    Article  CAS  Google Scholar 

  14. Arena, F., Barbera, K., Italiano, G., Bonura, G., Spadaro, L., & Frusteri, F. (2007). Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 249, 185–194.

    Article  CAS  Google Scholar 

  15. Parkinson, B. A., & Weaver, P. F. (1984). Photoelectrochemical pumping of enzymatic CO2 reduction. Nature, 309, 148–149.

    Article  CAS  Google Scholar 

  16. Reda, T., Plugge, C. M., Abram, N. J., & Hirst, J. (2008). Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proceedings of the National Academy of Sciences, 105(31), 10654–10658.

    Article  CAS  Google Scholar 

  17. Ruschig, U., Muller, U., Willnow, P., & Hopner, T. (1976). CO2 reduction of formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus. European Journal of Biochemistry, 70, 325–330.

    Article  CAS  Google Scholar 

  18. Amao, Y., & Watanabe, T. (2007). Photochemical and enzymatic synthesis of methanol from formaldehyde with alcohol dehydrogenase from Saccharomyces cerevisiae and water-soluble zinc porphyrin. Journal of Molecular Catalysis. B, Enzymatic, 44(1), 27–31.

    Article  CAS  Google Scholar 

  19. Dave, B. C. (2000). Dehydrogenase enzymatic synthesis of methanol. US patent 6,440,711,B1.

  20. El-Zahab, B., Donnelly, D., & Wang, P. (2008). Particle-attached NADH enables reduction of CO2 for methanol production catalyzed by coimmobilized enzymes with in situ regeneration of the cofactor. Biotechnology and Bioengineering, 99(3), 508–514.

    Article  CAS  Google Scholar 

  21. Obert, R., & Dave, B. C. (1999). Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol–gel matrices. Journal of the American Chemical Society, 121, 12192–12193.

    Article  CAS  Google Scholar 

  22. Xu, S.-W., Lu, Y., Li, J., Jiang, Z.-Y., & Wu, H. (2006). Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Industrial & Engineering Chemistry Research, 45(13), 4567–4573.

    Article  CAS  Google Scholar 

  23. Alberty, R. A. (2003). Thermodynamics of biochemical reactions. New Jersey: Wiley.

    Book  Google Scholar 

  24. Mavrovouniotis, M. L. (1990). Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnology and Bioengineering, 36, 1070–1082.

    Article  CAS  Google Scholar 

  25. Jankowski, M. D., Henry, C. S., Broadbelt, L. J., & Hatzimanikatis, V. (2008). Group contribution method for thermodynamic analysis of complex metabolic networks. Biophysical Journal, 95, 1487–1499.

    Article  CAS  Google Scholar 

  26. Clarke, E. C. W., & Glew, D. N. (1980). Evaluation of Debye–Hückel limiting slopes for water between 0 and 150°C. Journal of the Chemical Society. Faraday Transactions, 76, 1911–1916.

    Article  CAS  Google Scholar 

  27. Serdakowski, A. L., & Dordick, J. S. (2008). Enzyme activation for organic solvents made easy. Trends in Biotechnology, 26(1), 48–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Linda Broadbelt for the valuable discussions. This study was supported by an IREE (SG-B5-2006) and Biocatalysis Seed Grant (2008) from the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskaya, F.S., Zhao, X., Flickinger, M.C. et al. Thermodynamic Feasibility of Enzymatic Reduction of Carbon Dioxide to Methanol. Appl Biochem Biotechnol 162, 391–398 (2010). https://doi.org/10.1007/s12010-009-8758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8758-x

Keywords

Navigation