Skip to main content
Log in

Dominant Negative LRP5 Decreases Tumorigenicity and Metastasis of Osteosarcoma in an Animal Model

  • Symposium: Molecular Genetics in Sarcoma
  • Published:
Clinical Orthopaedics and Related Research

Abstract

Osteosarcoma (OS) is a primary malignant bone tumor with a high propensity for local recurrence and distant metastasis. We previously showed a secreted, dominant-negative LRP5 receptor (DNLRP5) suppressed in vitro migration and invasion of the OS cell line SaOS-2. Therefore, we hypothesized DNLRP5 also has in vivo antitumor activity against OS. We used the 143B cell line as a model to study the effect of DNLRP5 by stable transfection. Inhibition of Wnt signaling by DNLRP5 was verified by a reduction in TOPFLASH luciferase activity. In soft agar, DNLRP5-transfected 143B cells formed fewer and smaller colonies than control transfected cells. DNLRP5 transfection reduced in vivo tumor growth of 143B cells in nude mice. DNLRP5 also decreased in vitro cellular motility in a scratch wound assay. In a spontaneous pulmonary metastasis model, DNLRP5 reduced both the size and number of lung metastatic nodules. The reduction in cellular invasiveness by DNLRP5 was associated with decreased expression of matrix metalloproteinase-2, N-cadherin, and Snail. Our data suggest canonical Wnt/LRP5 signaling reflects an important underlying mechanism of OS progression. Therefore, strategies to suppress LRP5-mediated signaling in OS cells may lead to a reduction in local or systemic disease burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3A–B
Fig. 4A–B
Fig. 5A–B

Similar content being viewed by others

References

  1. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–89.

    Article  PubMed  CAS  Google Scholar 

  2. Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC. Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene. 2008;27(15):2243–2248.

    Article  PubMed  CAS  Google Scholar 

  3. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;382:225–230.

    Article  PubMed  CAS  Google Scholar 

  4. Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol. 2000;60:1091–1099.

    Article  PubMed  CAS  Google Scholar 

  5. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–480.

    Article  PubMed  CAS  Google Scholar 

  6. Dass CR, Ek ET, Contreras KG, Choong PF. A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis. 2006;23:367–380.

    Article  PubMed  Google Scholar 

  7. Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest. 2001;19:292–315.

    Article  PubMed  CAS  Google Scholar 

  8. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–523.

    Article  PubMed  CAS  Google Scholar 

  9. Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R, Holcombe RF, Hoang BH. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res. 2007;25:964–971.

    Article  PubMed  CAS  Google Scholar 

  10. Hazan RB, Kang L, Whooley BP, Borgen PI. N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun. 1997;4:399–411.

    Article  PubMed  CAS  Google Scholar 

  11. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148:779–790.

    Article  PubMed  CAS  Google Scholar 

  12. Hoang BH, Kubo T, Healey JH, Sowers R, Mazza B, Yang R, Huvos AG, Meyers PA, Gorlick R. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer. 2004;109:106–111.

    Article  PubMed  CAS  Google Scholar 

  13. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:303–314.

    Article  PubMed  CAS  Google Scholar 

  14. Kuphal S, Palm HG, Poser I, Bosserhoff AK. Snail-regulated genes in malignant melanoma. Melanoma Res. 2005;15:305–313.

    Article  PubMed  CAS  Google Scholar 

  15. Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO. The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem. 2006;281:35081–35087.

    Article  PubMed  CAS  Google Scholar 

  16. Luu HH, Kang Q, Park JK, Si W, Luo Q, Jiang W, Yin H, Montag AG, Simon MA, Peabody TD, Haydon RC, Rinker-Schaeffer CW, He TC. An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Metastasis. 2005;22:319–329.

    Article  PubMed  Google Scholar 

  17. Luu HH, Zhang R, Haydon RC, Rayburn E, Kang Q, Si W, Park JK, Wang H, Peng Y, Jiang W, He TC. Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets. 2004;14:653–671.

    Article  Google Scholar 

  18. McAllister RM, Gardner MB, Greene AE, Bradt C, Nichols WW, Landing BH. Cultivation in vitro of cells derived from a human osteosarcoma. Cancer. 1971;27:397–402.

    Article  PubMed  CAS  Google Scholar 

  19. Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y, Miyazaki K. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer. 2004;90:1265–1273.

    Article  PubMed  CAS  Google Scholar 

  20. Pompetti F, Rizzo P, Simon RM, Freidlin B, Mew DJ, Pass HI, Picci P, Levine AS, Carbone M. Oncogene alterations in primary, recurrent, and metastatic human bone tumors. J Cell Biochem. 1996;63:37–50.

    Article  PubMed  CAS  Google Scholar 

  21. Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem. 2006;281:38276–38284.

    Article  PubMed  CAS  Google Scholar 

  22. Staal FJT, Clevers HC. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol. 2005;5:21–30.

    Article  PubMed  CAS  Google Scholar 

  23. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000;407:530–535.

    Article  PubMed  CAS  Google Scholar 

  24. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–454.

    Article  PubMed  CAS  Google Scholar 

  25. Wu B, Crampton SP, Hughes CC. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity. 2007;26:227–239.

    Article  PubMed  CAS  Google Scholar 

  26. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8:1398–1406.

    Article  PubMed  CAS  Google Scholar 

  27. Zi X, Guo Y, Simoneau AR, Hope C, Xie J, Holcombe RF, Hoang BH. Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res. 2005;65:9762–9770.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Matthew Warman for the DNLRP5 construct, Dr Marian Waterman for the TCF luciferase constructs, and Dr Randall F. Holcombe for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang H. Hoang MD.

Additional information

One or more of the authors has received funding from the Aircast Foundation, the Orthopaedic Research and Education Foundation, and National Institutes of Health CA116003 (BHH); and the Neil Chamberlain Research Fund and National Institutes of Health CA109428 (XZ).

Each author certifies that his or her institution has approved the human and animal protocols for this investigation for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

About this article

Cite this article

Guo, Y., Rubin, E.M., Xie, J. et al. Dominant Negative LRP5 Decreases Tumorigenicity and Metastasis of Osteosarcoma in an Animal Model. Clin Orthop Relat Res 466, 2039–2045 (2008). https://doi.org/10.1007/s11999-008-0344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0344-y

Keywords

Navigation