Skip to main content
Log in

Assessment of Visible Near-Infrared Hyperspectral Imaging as a Tool for Detection of Horsemeat Adulteration in Minced Beef

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

For the first time, a visible near-infrared (Vis-NIR) hyperspectral imaging system (400–1000 nm) was investigated for rapid and non-destructive detection of adulteration in minced beef meat. Minced beef meat samples were adulterated with horsemeat at levels ranging from 2 to 50 % (w/w), at approximately 2 % increments. Calibration model was developed and optimized using partial least-squares regression (PLSR) with internal full cross-validation and then validated by external validation using an independent validation set. Several spectral pre-treatment techniques including derivatives, standard normal variate (SNV), and multiplicative scatter correction (MSC) were applied to examine the influence of spectral variations for predicting adulteration in minced beef. The established PLSR models based on raw spectra had coefficients of determination (R 2) of 0.99, 0.99, and 0.98, and standard errors of 1.14, 1.56, and 2.23 % for calibration, cross-validation, and prediction, respectively. Four important wavelengths (515, 595, 650, and 880 nm) were selected using regression coefficients resulting from the best PLSR model. By using these important wavelengths, an image processing algorithm was developed to predict the adulteration level in each pixel in whole surface of the samples. The results demonstrate that hyperspectral imaging coupled with multivariate analysis can be successfully applied as a rapid screening technique for adulterate detection in minced meat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alamprese, C., Casale, M., Sinelli, N., Lanteri, S., & Casiraghi, E. (2013). Detection of minced beef adulteration with turkey meat by UV–VIS, NIR and MIR spectroscopy. LWT - Food Science and Technology, 53, 225–232.

    Article  CAS  Google Scholar 

  • Al-Jowder, O., Defernez, M., Kemsley, E., & Wilson, R. H. (2002). Detection of adulteration in cooked meat products by mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 50, 1325–1329.

    Article  CAS  Google Scholar 

  • Andrés, S., Silva, A., Soares-Pereira, A. L., Martins, C., Bruno-Soares, A. M., & Murray, I. (2008). The use of visible and near infrared reflectance spectroscopy to predict beef M. Longissimus thoracis et lumborum quality attributes. Meat Science, 78, 217–224.

    Article  Google Scholar 

  • Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012a). Near-infrared hyperspectral imaging for grading and classification of pork. Meat Science, 90, 259–268.

    Article  Google Scholar 

  • Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012b). Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Analytica Chimica Acta, 719, 30–42.

    Article  CAS  Google Scholar 

  • BBC. (2010). (http://news.bbc.co.uk/2/hi/asia-pacific/7720404.stm) (accessed: 13 June 2014).

  • Boyaci, I. H., Temiz, H. T., Uysal, R. S., Velioglu, H. M., Yadegari, R. J., & Rishkan, M. M. (2014). A novel method for discrimination of beef and horsemeat using raman spectroscopy. Food Chemistry, 148, 37–41.

    Article  CAS  Google Scholar 

  • Burger, J., & Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems, 108, 13–22.

    Article  CAS  Google Scholar 

  • Cozzolino, D., & Murray, I. (2004). Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT - Food Science and Technology, 37, 447–452.

    Article  CAS  Google Scholar 

  • Dissing, B. S., Papadopoulou, O. S., Tassou, C., Ersbøll, B. K., Carstensen, J. M., Panagou, E. Z., & Nychas, G.-J. (2013). Using multispectral imaging for spoilage detection of pork meat. Food and Bioprocess Technology, 6, 2268–2279.

    Article  Google Scholar 

  • Ellis, D. I., Brewster, V. L., Dunn, W. B., Allwood, J. W., Golovanov, A. P., & Goodacre, R. (2012). Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chemical Society Reviews, 41, 5706–5727.

    Article  CAS  Google Scholar 

  • ElMasry, G., Sun, D.-W., & Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International, 44, 2624–2633.

    Article  Google Scholar 

  • ElMasry, G., Kamruzzaman, M., Sun, D.-W., & Allen, P. (2012a). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products, a review. Critical Reviews in Food Science and Nutrition, 52, 999–1023.

    Article  Google Scholar 

  • ElMasry, G., Sun, D.-W., & Allen, P. (2012b). Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. Journal of Food Engineering, 117, 235–246.

    Article  Google Scholar 

  • Feng, Y.-Z., ElMasry, G., Sun, D.-W., Scannell, A. G. M., Walsh, D., & Morcy, N. (2013). Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chemistry, 138, 1829–1836.

    Article  CAS  Google Scholar 

  • Feng, Y.-Z., & Sun, D.-W. (2013). Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta, 109, 74–83.

    Article  CAS  Google Scholar 

  • Grau, R., Sánchez, A. J., Girón, J., Iborra, E., Fuentes, A., & Barat, J. M. (2011). Nondestructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy. Food Research International, 44, 331–337.

    Article  CAS  Google Scholar 

  • Iqbal, A., Sun, D.-W., & Allen, P. (2013). Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system. Journal of Food Engineering, 117, 42–51.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering, 104, 332–340.

    Article  Google Scholar 

  • Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012a). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316–325.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012b). Prediction of some quality attributes of lamb meat using near infrared hyperspectral imaging and multivariate analysis. Analytica Chimica Acta, 714, 57–67.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012c). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovative Food Science and Emerging Technologies, 16, 218–226.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., Sun, D.-W., ElMasry, G., & Allen, P. (2013a). Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130–136.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2013b). Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chemistry, 141, 389–396.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., Makino, Y., & Oshita, S. (2015). Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: A review. Analytica Chimica Acta, 853, 19–29.

    Article  CAS  Google Scholar 

  • Kelly, J. F. D., Downey, G., & Fouratier, V. (2004). Initial study of honey adulteration by sugar solutions using mid-infrared (MIR) spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry, 52, 33–39.

    Article  CAS  Google Scholar 

  • Liu, D., Ma, J., Sun, D.-W., Pu, H., Gao, W., Qu, J., & Zeng, X.-A. (2014). Prediction of color and pH of salted porcine meats using visible and near-infrared hyperspectral imaging. Food and Bioprocess Technology. doi:10.1007/s11947-014-1327-5.

    Google Scholar 

  • Maleki, M. R., Mouazen, A. M., Ramon, H., & De Baerdemaeker, J. (2007). Multiplicative scatter correction during on-line measurement with near infrared spectroscopy. Biosystems Engineering, 96, 427–433.

    Article  Google Scholar 

  • Mamani-Linares, L. W., Gallo, C., & Alomar, D. (2012). Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Science, 90, 378–385.

    Article  CAS  Google Scholar 

  • Meza-Márquez, O. G., Gallardo-Velázquez, T., & Osorio-Revilla, G. (2010). Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Science, 86, 511–519.

    Article  Google Scholar 

  • Morsy, N., & Sun, D. W. (2013). Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen- thawed minced beef. Meat Science, 93, 292–302.

    Article  CAS  Google Scholar 

  • Nakariyakul, S., & Casasent, D. (2009). Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data. Journal of Food Engineering, 94, 358–365.

    Article  Google Scholar 

  • Park, B., Yoon, S.-C., Windham, W., Lawrence, K., Kim, M., & Chao, K. (2011). Line-scan hyperspectral imaging for real-time in-line poultry fecal detection. Sensing and Instrumentation in Food Quality and safety, 5, 25–32.

    Article  Google Scholar 

  • Peng, Y., Zhang, J., Wang, W., Li, Y., Wu, J., Huang, H., Gao, X., & Jiang, W. (2011). Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles. Journal of Food Engineering, 102, 163–169.

    Article  Google Scholar 

  • Pu, H., Sun, D.-W., Ma, J., Liu, D., & Kamruzzaman, M. (2014a). Hierarchical variable selection for predicting chemical constituents in lamb meats using hyperspectral imaging. Journal of Food Engineering, 143, 44–52.

    Article  CAS  Google Scholar 

  • Pu, H., Xie, A., Sun, D.-W., Kamruzzaman, M., & Ma, J. (2014b). Application of wavelet analysis to spectral data for categorization of lamb muscles. Food and Bioprocess Technology. doi:10.1007/s11947-014-1393-8.

    Google Scholar 

  • Rohman, A., Sismindari, Y., Erwanto, Y. B., & Man, C. (2011). Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science, 88, 91–95.

    Article  CAS  Google Scholar 

  • Siripatrawan, U., Makino, Y., Kawagoe, Y., & Oshita, S. (2011). Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta, 85, 276–281.

    Article  CAS  Google Scholar 

  • Taghizadeh, M., Gowen, A., & O’Donnell, C. (2009). Prediction of white button mushroom (Agaricus bisporus) moisture content using hyperspectral imaging. Sensing and Instrumentation in Food Quality and Safety, 3, 219–226.

    Article  Google Scholar 

  • Tang, J., Faustman, C., & Hoagland, T. A. (2004). Krzywicki revisited: equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts. Journal of Food Science, 69, C717–C720.

    Article  CAS  Google Scholar 

  • Tao, F., Peng, Y., Li, Y., Chao, K., & Dhakal, S. (2012). Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Science, 90, 851–857.

    Article  Google Scholar 

  • Wold, J. P., Jakobsen, T., & Krane, L. (1996). Atlantic salmon average fat content estimated by near-infrared transmittance spectroscopy. Journal of Food Science, 61, 74–77.

    Article  CAS  Google Scholar 

  • Wu, W., Walczal, B., Massart, D. L., Prebble, K., & Last, I. (1995). Spectral transformation and wavelength selection in near-infrared spectra classification. Analytica Chimica Acta, 315, 243–255.

    Article  CAS  Google Scholar 

  • Wu, J., Peng, Y., Li, Y., Wang, W., Chen, J., & Dhakal, S. (2012). Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique. Journal of Food Engineering, 109, 267–273.

    Article  Google Scholar 

  • Wu, D., Shi, H., He, Y., Yu, X., & Bao, Y. (2013). Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn. Journal of Food Engineering, 119, 680–686.

    Article  CAS  Google Scholar 

  • Zhao, M., Downey, G., & O’Donnell, C. (2014). Detection of adulteration in fresh and frozen beef burger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis. Meat Science, 96, 1003–1011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by The Japan Society for the Promotion of Science (No. P13395) and a Grant-in-Aid for Scientific Research (JSPS No. 13 F03395)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Kamruzzaman or Yoshio Makino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamruzzaman, M., Makino, Y., Oshita, S. et al. Assessment of Visible Near-Infrared Hyperspectral Imaging as a Tool for Detection of Horsemeat Adulteration in Minced Beef. Food Bioprocess Technol 8, 1054–1062 (2015). https://doi.org/10.1007/s11947-015-1470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1470-7

Keywords

Navigation