Skip to main content

Advertisement

Log in

Epigenetic Pathways Regulating Bone Homeostasis: Potential Targeting for Intervention of Skeletal Disorders

  • Hot Topic
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Epigenetic regulation utilizes different mechanisms to convey heritable traits to progeny cells that are independent of DNA sequence, including DNA silencing, post-translational modifications of histone proteins, and the post-transcriptional modulation of RNA transcript levels by non-coding RNAs. Although long non-coding RNAs have recently emerged as important regulators of gene imprinting, their functions during osteogenesis are as yet unexplored. In contrast, microRNAs (miRNAs) are well characterized for their control of osteogenic and osteoclastic pathways; thus, further defining how gene regulatory networks essential for skeleton functions are coordinated and finely tuned through the activities of miRNAs. Roles of miRNAs are constantly expanding as new studies uncover associations with skeletal disorders. The distinct functions of epigenetic regulators and evidence for integrating their activities to control normal bone gene expression and bone disease will be presented. In addition, potential for using “signature miRNAs” to identify, manage, and therapeutically treat osteosarcoma will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kilpinen H, Dermitzakis ET. Genetic and epigenetic contribution to complex traits. Hum Mol Genet. 2012;21:R24–8.

    PubMed  CAS  Google Scholar 

  2. Butler JS, Koutelou E, Schibler AC, Dent SY. Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease. Epigenomics. 2012;4:163–77.

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Stankov K, Benc D, Draskovic D. Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics. 2013;132:1112–22.

    PubMed  Google Scholar 

  4. Aslibekyan S, Claas SA, Arnett DK. Clinical applications of epigenetics in cardiovascular disease: the long road ahead. Transl Res. 2014. doi:10.1016/j.trsl.2014.04.004.

  5. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Members of Epi S. Epigenetics and human obesity. Int J Obes (Lond). 2014. doi:10.1038/ijo.2014.34.

  6. Vrtacnik P, Marc J, Ostanek B. Epigenetic mechanisms in bone. Clin Chem Lab Med. 2014;52:589–608.

    PubMed  CAS  Google Scholar 

  7. Gamez B, Rodriguez-Carballo E, Ventura F. MicroRNAs and post-transcriptional regulation of skeletal development. J Mol Endocrinol. 2014;52:R179–97.

    PubMed  CAS  Google Scholar 

  8. Delgado-Calle J, Garmilla P, Riancho JA. Do epigenetic marks govern bone mass and homeostasis? Curr Genomics. 2012;13:252–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Barter MJ, Young DA. Epigenetic mechanisms and non-coding RNAs in osteoarthritis. Curr Rheumatol Rep. 2013;15:353.

    PubMed  Google Scholar 

  10. Murr R. Interplay between different epigenetic modifications and mechanisms. Adv Genet. 2010;70:101–41.

    PubMed  CAS  Google Scholar 

  11. van der Eerden BC. MicroRNAs in the skeleton: cell-restricted or potent intercellular communicators? Arch Biochem Biophys. 2014. doi:10.1016/j.abb.2014.04.016.

  12. Dong S, Yang B, Guo H, Kang F. MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun. 2012;418:587–91.

    PubMed  CAS  Google Scholar 

  13. Lian JB, Stein GS, van Wijnen AJ, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 2012;8:212–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Taipaleenmaki H, Bjerre Hokland L, Chen L, Kauppinen S, Kassem M. Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol. 2012;166:359–71.

    PubMed  CAS  Google Scholar 

  15. van Wijnen AJ, van de Peppel J, van Leeuwen JP, et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep. 2013;11:72–82.

    PubMed  PubMed Central  Google Scholar 

  16. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    PubMed  CAS  Google Scholar 

  17. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Lehmann U. Aberrant DNA, methylation of microRNA genes in human breast cancer—a critical appraisal. Cell Tissue Res. 2014;356:657–64.

    PubMed  CAS  Google Scholar 

  19. Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway. Mol Cell. 2010;38:465–75.

    PubMed  CAS  Google Scholar 

  20. de Andres MC, Kingham E, Imagawa K, et al. Epigenetic regulation during fetal femur development: DNA methylation matters. PLoS One. 2013;8:e54957.

    PubMed  PubMed Central  Google Scholar 

  21. Villagra A, Gutierrez J, Paredes R, et al. Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem. 2002;85:112–22.

    PubMed  CAS  Google Scholar 

  22. Lee JY, Lee YM, Kim MJ, et al. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol Cells. 2006;22:182–8.

    PubMed  CAS  Google Scholar 

  23. Hakelien AM, Bryne JC, Harstad KG, et al. The regulatory landscape of osteogenic differentiation. Stem Cells. 2014;32:2780–93.

    PubMed  Google Scholar 

  24. Li J, Zhang N, Huang X, et al. Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis. 2013;4:e832.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29:664–73.

    PubMed  CAS  Google Scholar 

  26. Fetahu IS, Hobaus J, Kallay E. Vitamin D and the epigenome. Front Physiol. 2014;5:164.

    PubMed  PubMed Central  Google Scholar 

  27. Zhou Y, Zhao LJ, Xu X, et al. DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation. J Steroid Biochem Mol Biol. 2014;144PA:207-14.

  28. Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol. 2014;4:80.

    PubMed  PubMed Central  Google Scholar 

  29. Richardson BC, Patel DR. Epigenetics in 2013. DNA methylation and miRNA—key roles in systemic autoimmunity. Nat Rev Rheumatol. 2014;10:72–4.

    PubMed  CAS  Google Scholar 

  30. Jeffries MA, Donica M, Baker L, et al. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol. 2014. doi:10.1002/art.38762.

  31. Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013;65:197–205.

    PubMed  CAS  Google Scholar 

  32. Barter MJ, Bui C, Young DA. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthritis Cartilage. 2012;20:339–49.

    PubMed  CAS  Google Scholar 

  33. Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem. 2013;288:10061–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Imagawa K, de Andres MC, Hashimoto K, et al. Reduced type IX collagen gene expression in human osteoarthritic chondrocytes is associated with epigenetic silencing by DNA hypermethylation. Arthritis Rheumatol. 2014. doi:10.1002/art.38774.

  35. Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21:396–420.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Gutierrez J, Paredes R, Cruzat F, et al. Chromatin remodeling by SWI/SNF results in nucleosome mobilization to preferential positions in the rat osteocalcin gene promoter. J Biol Chem. 2007;282:9445–57.

    PubMed  CAS  Google Scholar 

  37. Montecino M, Lian J, Stein G, Stein J. Changes in chromatin structure support constitutive and developmentally regulated transcription of the bone-specific osteocalcin gene in osteoblastic cells. Biochemistry. 1996;35:5093–102.

    PubMed  CAS  Google Scholar 

  38. Kimura H. Histone modifications for human epigenome analysis. J Hum Genet. 2013;58:439–45.

    PubMed  CAS  Google Scholar 

  39. Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    PubMed  CAS  Google Scholar 

  40. Ye L, Fan Z, Yu B, et al. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 2012;11:50–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Vega RB, Matsuda K, Oh J, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004;119:555–66.

    PubMed  CAS  Google Scholar 

  42. Razidlo DF, Whitney TJ, Casper ME, et al. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS One. 2010;5:e11492.

    PubMed  PubMed Central  Google Scholar 

  43. Zhou S, Geng S, Glowacki J. Histone deacetylation mediates the rejuvenation of osteoblastogenesis by the combination of 25(OH)D3 and parathyroid hormone in MSCs from elders. J Steroid Biochem Mol Biol. 2013;136:156–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Hu X, Zhang X, Dai L, et al. Histone deacetylase inhibitor trichostatin A promotes the osteogenic differentiation of rat adipose-derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP signaling-dependent manner. Stem Cells Dev. 2013;22:248–55.

    PubMed  Google Scholar 

  45. Bradley EW, McGee-Lawrence ME, Westendorf JJ. Hdac-mediated control of endochondral and intramembranous ossification. Crit Rev Eukaryot Gene Expr. 2011;21:101–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Zhu ED, Demay MB, Gori F. Wdr5 is essential for osteoblast differentiation. J Biol Chem. 2008;283:7361–7.

    PubMed  CAS  Google Scholar 

  47. Sinha KM, Yasuda H, Coombes MM, Dent SY, de Crombrugghe B. Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO J. 2010;29:68–79.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Hemming S, Cakouros D, Isenmann S, et al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells. 2014;32:802–15.

    PubMed  CAS  Google Scholar 

  49. Young DW, Pratap J, Javed A, et al. SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation. J Cell Biochem. 2005;94:720–30.

    PubMed  CAS  Google Scholar 

  50. Cruzat F, Henriquez B, Villagra A, et al. SWI/SNF-independent nuclease hypersensitivity and an increased level of histone acetylation at the P1 promoter accompany active transcription of the bone master gene Runx2. Biochemistry. 2009;48:7287–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Montecino M, Stein JL, Stein GS, et al. Nucleosome organization and targeting of SWI/SNF chromatin-remodeling complexes: contributions of the DNA sequence. Biochem Cell Biol. 2007;85:419–25.

    PubMed  CAS  Google Scholar 

  52. Wu H, Whitfield TW, Gordon JA, et al. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol. 2014;15:R52. Identified Runx2 binding to genomic DNA that discovered hundreds of Runx2 target genes related to epigenetic levels of control during stages of osteoblast differentiation. The complete data set serve as a valuable resource for investigators.

    PubMed  PubMed Central  Google Scholar 

  53. Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.

    PubMed  CAS  Google Scholar 

  55. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.

    PubMed  CAS  Google Scholar 

  56. Flynn RA, Chang HY. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell. 2014;14:752–61.

    PubMed  CAS  Google Scholar 

  57. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.

    PubMed  CAS  Google Scholar 

  58. Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30:348–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Orom UA, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell. 2013;154:1190–3.

    PubMed  PubMed Central  Google Scholar 

  60. Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152:1308–23.

    PubMed  CAS  Google Scholar 

  61. Paci P, Colombo T, Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol. 2014;8:83.

    PubMed  PubMed Central  Google Scholar 

  62. Zhu L, Xu PC. Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem Biophys Res Commun. 2013;432:612–7.

    PubMed  CAS  Google Scholar 

  63. Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev. 2014;28:491–501.

    PubMed  PubMed Central  Google Scholar 

  64. Li L, Liu B, Wapinski OL, et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 2013;5:3–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Dasen JS. Long noncoding RNAs in development: solidifying the Lncs to Hox gene regulation. Cell Rep. 2013;5:1–2.

    PubMed  CAS  Google Scholar 

  66. Young DW, Hassan MQ, Pratap J, et al. Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature. 2007;445:442–6.

    PubMed  CAS  Google Scholar 

  67. Zaidi SK, Grandy RA, Lopez-Camacho C, et al. Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes? Cancer Res. 2014;74:420–5.

    PubMed  CAS  Google Scholar 

  68. Sarge KD, Park-Sarge OK. Gene bookmarking: keeping the pages open. Trends Biochem Sci. 2005;30:605–10.

    PubMed  CAS  Google Scholar 

  69. Zaidi SK, Young DW, Javed A, et al. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer. 2007;7:454–63.

    PubMed  CAS  Google Scholar 

  70. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    PubMed  CAS  Google Scholar 

  71. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    PubMed  CAS  Google Scholar 

  72. Ell B, Qiu Q, Wei Y, et al. The microRNA-23b/27b/24 cluster promotes breast cancer lung metastasis by targeting metastasis-suppressive gene prosaposin. J Biol Chem. 2014;289:21888–95.

    PubMed  CAS  Google Scholar 

  73. Browne G, Taipaleenmaki H, Stein GS, Stein JL, Lian JB. MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab. 2014;25:320–7.

    PubMed  CAS  Google Scholar 

  74. Croset M, Santini D, Iuliani M, et al. MicroRNAs and bone metastasis: a new challenge. Molecules. 2014;19:10115–28.

    PubMed  CAS  Google Scholar 

  75. Zhou G, Shi X, Zhang J, Wu S, Zhao J. MicroRNAs in osteosarcoma: from biological players to clinical contributors, a review. J Int Med Res. 2013;41:1–12.

    PubMed  CAS  Google Scholar 

  76. Bi C, Chng WJ. MicroRNA: important player in the pathobiology of multiple myeloma. Biomed Res Int. 2014;2014:521586.

    PubMed  PubMed Central  Google Scholar 

  77. Gaur T, Hussain S, Mudhasani R, et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol. 2010;340:10–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287:42084–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Zhang J, Tu Q, Bonewald LF, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26:1953–63.

    PubMed  CAS  Google Scholar 

  80. Liu H, Sun Q, Wan C, Li L, Zhang L, Chen Z. MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. J Cell Physiol. 2014;229:1494–502.

    PubMed  CAS  Google Scholar 

  81. Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011;108:9863–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Baglio SR, Devescovi V, Granchi D, Baldini N. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene. 2013;527:321–31.

    PubMed  CAS  Google Scholar 

  83. Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z. miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett. 2013;587:3027–31.

    PubMed  CAS  Google Scholar 

  84. Li E, Zhang J, Yuan T, Ma B. MiR-143 suppresses osteogenic differentiation by targeting Osterix. Mol Cell Biochem. 2014;390:69–74.

    PubMed  CAS  Google Scholar 

  85. Chen Q, Liu W, Sinha KM, Yasuda H, de Crombrugghe B. Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS One. 2013;8:e58104.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med. 2013;19:93–100. Demonstrated the therapeutic effectiveness of antagomiR delivery to osteoblasts in vivo to prevent bone loss in mouse models of osteoporosis.

    PubMed  Google Scholar 

  87. Deng Y, Zhou H, Zou D, et al. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Biomaterials. 2013;34:6717–28.

    PubMed  CAS  Google Scholar 

  88. Hassan MQ, Gordon JA, Beloti MM, et al. A network connecting Runx2, SATB2, and the miR-23a ~ 27a ~ 24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A. 2010;107:19879–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284:15676–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117:3648–57.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Kapinas K, Delany AM. MicroRNA biogenesis and regulation of bone remodeling. Arthritis Res Ther. 2011;13:220.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A. 2008;105:13906–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Wang J, Greene SB, Bonilla-Claudio M, et al. Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell. 2010;19:903–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Berendsen AD, Olsen BR. Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology. Cell Mol Life Sci. 2014;71:493–7.

    PubMed  CAS  Google Scholar 

  95. Kawai M, de Paula FJ, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Intern Med. 2012;272:317–29.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Liao L, Yang X, Su X, et al. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis. 2013;4:e600.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Huang S, Wang S, Bian C, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 2012;21:2531–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010;28:357–64.

    PubMed  PubMed Central  Google Scholar 

  99. Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem. 2013;288:14264–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Yang L, Cheng P, Chen C, et al. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res. 2012;27:1598–606.

    PubMed  CAS  Google Scholar 

  101. Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol. 2014;229:1236–44.

    PubMed  CAS  Google Scholar 

  102. Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol. 2013;48:51–68.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Gromak N. Intronic microRNAs: a crossroad in gene regulation. Biochem Soc Trans. 2012;40:759–61.

    PubMed  CAS  Google Scholar 

  104. Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013;73:473–7.

    PubMed  CAS  Google Scholar 

  105. Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009;119:3666–77.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Lei SF, Papasian CJ, Deng HW. Polymorphisms in predicted miRNA binding sites and osteoporosis. J Bone Miner Res. 2011;26:72–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Hassan MQ, Tare R, Lee SH, et al. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol. 2007;27:3337–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Gordon JA, Hassan MQ, Saini S, et al. Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors. Mol Cell Biol. 2010;30:3531–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Chen C, Cheng P, Xie H, et al. MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res. 2014;29:338–47.

    PubMed  CAS  Google Scholar 

  110. Wang Y, Li L, Moore BT, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One. 2012;7:e34641.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Seeliger C, Karpinski K, Haug AT, et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res. 2014;29:1718–28.

    PubMed  CAS  Google Scholar 

  112. Sugatani T, Hruska KA. Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem. 2013;114:1217–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Ell B, Mercatali L, Ibrahim T, et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell. 2013;24:542–56. First study highlights the translational potential of miRNAs associated with osteoclasts to inhibit metastatic bone disease by systemic delivery in mouse models of tumor growth in bone.

    PubMed  CAS  Google Scholar 

  114. Krzeszinski JY, Wei W, Huynh H, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 2014;512:431-5.

  115. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–32.

    PubMed  Google Scholar 

  116. Zhou W, Hao M, Du X, Chen K, Wang G, Yang J. Advances in targeted therapy for osteosarcoma. Discov Med. 2014;17:301–7.

    PubMed  Google Scholar 

  117. Mutsaers AJ, Walkley CR. Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone. 2014;62:56–63.

    PubMed  Google Scholar 

  118. Mortus JR, Zhang Y, Hughes DP. Developmental pathways hijacked by osteosarcoma. Adv Exp Med Biol. 2014;804:93–118.

    PubMed  Google Scholar 

  119. Brennecke P, Arlt MJ, Campanile C, et al. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clin Exp Metastasis. 2014;31:339–49.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Martin JW, Zielenska M, Stein GS, van Wijnen AJ, Squire JA. The Role of RUNX2 in Osteosarcoma Oncogenesis. Sarcoma. 2011;2011:282745.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Sadikovic B, Thorner P, Chilton-Macneill S, et al. Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer. 2010;10:202.

    PubMed  PubMed Central  Google Scholar 

  122. van der Deen M, Akech J, Lapointe D, et al. Genomic promoter occupancy of runt-related transcription factor RUNX2 in Osteosarcoma cells identifies genes involved in cell adhesion and motility. J Biol Chem. 2012;287:4503–17.

    PubMed  PubMed Central  Google Scholar 

  123. Pereira BP, Zhou Y, Gupta A, et al. Runx2, p53, and pRB status as diagnostic parameters for deregulation of osteoblast growth and differentiation in a new pre-chemotherapeutic osteosarcoma cell line (OS1). J Cell Physiol. 2009;221:778–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Yang J, Zhao L, Tian W, et al. Correlation of WWOX, RUNX2 and VEGFA protein expression in human osteosarcoma. BMC Med Genomics. 2013;6:56.

    PubMed  PubMed Central  Google Scholar 

  125. Del Mare S, Kurek KC, Stein GS, Lian JB, Aqeilan RI. Role of the WWOX tumor suppressor gene in bone homeostasis and the pathogenesis of osteosarcoma. Am J Cancer Res. 2011;1:585–94.

    PubMed  PubMed Central  Google Scholar 

  126. Kurek KC, Del Mare S, Salah Z, et al. Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression. Cancer Res. 2010;70:5577–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Aqeilan RI, Hassan MQ, de Bruin A, et al. The WWOX tumor suppressor is essential for postnatal survival and normal bone metabolism. J Biol Chem. 2008;283:21629–39.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumor Biol. 2013;34:2093–8.

    CAS  Google Scholar 

  129. Liang W, Gao B, Fu P, Xu S, Qian Y, Fu Q. The miRNAs in the pathogenesis of osteosarcoma. Front Biosci (Landmark Ed). 2013;18:788–94.

    CAS  Google Scholar 

  130. Jones KB, Salah Z, Del Mare S, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 2012;72:1865–77.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Maire G, Martin JW, Yoshimoto M, Chilton-MacNeill S, Zielenska M, Squire JA. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet. 2011;204:138–46.

    PubMed  CAS  Google Scholar 

  132. Ouyang L, Liu P, Yang S, Ye S, Xu W, Liu X. A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol. 2013;30:340.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Díaz for manuscript preparation and formatting, and S. H. Ralston of the Molecular Medicine Centre and Western General Hospital (Edinburgh, UK) and M. L. Johnson of the University of Missouri (Kansas City, USA) for their review of the manuscript. The authors acknowledge financial support from the National Institutes of Health (National Cancer Institute P01 CA082834, National Institute of Dental and Craniofacial Research R37 DE012528, National Institute of Arthritis and Musculoskeletal and Skin Diseases R01 AR039588 and P01 AR048818), and the US-Israel Binational Science Foundation (2011300), and FONDAP 15090007.

Compliance with Ethics Guidelines

Conflict of Interest

J. A. R. Gordon, M. A. Montecino, R. I. Aqeilan, J. L. Stein, G. S. Stein, and J. B. Lian declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane B. Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, J.A.R., Montecino, M.A., Aqeilan, R.I. et al. Epigenetic Pathways Regulating Bone Homeostasis: Potential Targeting for Intervention of Skeletal Disorders. Curr Osteoporos Rep 12, 496–506 (2014). https://doi.org/10.1007/s11914-014-0240-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0240-1

Keywords

Navigation