Skip to main content

Advertisement

Log in

Advances in Nerve Repair

  • Nerve and Muscle (M Hirano and LH Weimer, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Patients with peripheral nerve injuries face unpredictable and often suboptimal functional outcome, even following standard microsurgical nerve repair. The challenge of improving such outcomes following nerve surgical procedures has interested many research teams, in both clinical and fundamental fields. Some innovative treatments are presently being applied to a widening range of patients, whereas others will require further development before translation to human subjects. This article presents several recent advances in emerging therapies at various stages of clinical application. Nerve transfers have been successfully used in clinical settings, but new indications are being described, enlarging the range of patients who might benefit from them. Brief direct nerve electrical stimulation has been shown to improve nerve regeneration and outcome in animal models and in a small cohort of patients. Further clinical trials are warranted to prove the efficacy of this exciting and easily applicable approach. Animal studies also suggest a tremendous potential for stem and precursor cell therapy. Further studies will lead to a better understanding of their mechanisms of action in nerve repair and potential applications for human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Brown JM, Shah MN, Mackinnon SE. Distal nerve transfers: a biology-based rationale. Neurosurg Focus. 2009;26:E12.

    Article  PubMed  Google Scholar 

  2. Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci. 2011;31:5325–34.

    Article  PubMed  CAS  Google Scholar 

  3. Sunderland S. Rate of regeneration in human peripheral nerves. Arch Neurol Psychiat. 1947;58:251.

    Article  PubMed  CAS  Google Scholar 

  4. Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. J Neurosci. 1995;15:3876–85.

    PubMed  CAS  Google Scholar 

  5. Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995;15:3886–95.

    PubMed  CAS  Google Scholar 

  6. Gordon T, Sulaiman O, Boyd JG. Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst. 2003;8:236–50.

    Article  PubMed  Google Scholar 

  7. Tuttle HK. Exposure of the brachial plexus with nerve transplantation. JAMA. 1913;61:15–7.

    Article  Google Scholar 

  8. Millesi H, Meissl G, Berger A. The interfasicular nerve-grafting of the median and ulnar nerves. J Bone Joint Surg Am. 1972;54A:727–50.

    Google Scholar 

  9. Belzberg AJ, Dorsi MJ, Storm PB, Moriarity JL. Surgical repair of brachial plexus injury: a multinational survey of experienced peripheral nerve surgeons. J Neurosurg. 2004;101:365–76.

    Article  PubMed  Google Scholar 

  10. Oberlin C, Beal D, Leechavengvongs S, Salon A, Dauge MC, Sarcy JJ. Nerve transfer to biceps muscle using a part of ulnar nerve for C5-C6 avulsion of the brachial plexus: anatomical study and report of four cases. J Hand Surg Am. 1994;19:232–7.

    Article  PubMed  CAS  Google Scholar 

  11. Midha R. Nerve transfers for severe brachial plexus injuries: a review. Neurosurg Focus. 2004;16:E5.

    Article  PubMed  Google Scholar 

  12. Addas BM, Midha R. Nerve transfers for severe nerve injury. Neurosurg Clin N Am. 2009;20:27–38. vi.

    Article  PubMed  Google Scholar 

  13. Mackinnon SE, Colbert SH. Nerve transfers in the hand and upper extremity surgery. Tech Hand Up Extrem Surg. 2008;12:20–33.

    Article  PubMed  Google Scholar 

  14. Malessy MJ, Thomeer RT, van Dijk JG. Changing central nervous system control following intercostal nerve transfer. J Neurosurg. 1998;89:568–74.

    Article  PubMed  CAS  Google Scholar 

  15. Malessy MJ, Bakker D, Dekker AJ, Van Duk JG, Thomeer RT. Functional magnetic resonance imaging and control over the biceps muscle after intercostal-musculocutaneous nerve transfer. J Neurosurg. 2003;98:261–8.

    Article  PubMed  Google Scholar 

  16. Manduch M, Bezuhly M, Anastakis DJ, Crawley AP, Mikulis DJ. Serial fMRI of adaptive changes in primary sensorimotor cortex following thumb reconstruction. Neurol. 2002;59:1278–81.

    Article  CAS  Google Scholar 

  17. Taylor KS, Anastakis DJ, Davis KD. Cutting your nerve changes your brain. Brain. 2009;132:3122–33.

    Article  PubMed  Google Scholar 

  18. Midha R. Nerve transfers for severe brachial plexus injuries: a review. Neurosurg Focus. 2004;16:E5.

    Article  PubMed  Google Scholar 

  19. Tung TH, Novak CB, Mackinnon SE. Nerve transfers to the biceps and brachialis branches to improve elbow flexion strength after brachial plexus injuries. J Neurosurg. 2003;98:313–8.

    Article  PubMed  Google Scholar 

  20. Garg R, Merrell GA, Hillstrom HJ, Wolfe SW. Comparison of nerve transfers and nerve grafting for traumatic upper plexus palsy: a systematic review and analysis. J Bone Joint Surg Am. 2011;93:819–29. The first publication that shows via a systematic review that the outcomes of nerve transfer exceed those of conventional nerve graft repair of patients with brachial plexus injuries.

    Article  PubMed  Google Scholar 

  21. Toussaint CP, Zager EL. The double fascicular nerve transfer for restoration of elbow flexion. Neurosurgery. 2011;68:64–7.

    Article  PubMed  Google Scholar 

  22. Ray WZ, Pet MA, Yee A, Mackinnon SE. Double fascicular nerve transfer to the biceps and brachialis muscles after brachial plexus injury: clinical outcomes in a series of 29 cases. J Neurosurg. 2011;114:1520–8.

    Article  PubMed  Google Scholar 

  23. Carlsen BT, Kircher MF, Spinner RJ, Bishop AT, Shin AY. Comparison of single versus double nerve transfers for elbow flexion after brachial plexus injury. Plast Reconstr Surg. 2011;127:269–76. The first publication directly comparing the two currently used techniques for restoring elbow flexion function in terms of functional outcome.

    Article  PubMed  CAS  Google Scholar 

  24. Barbaro NM. Peripheral nerve injury. J Neurosurg. 2011;114:1516–7.

    Article  PubMed  Google Scholar 

  25. Garozzo D, Ferraresi S, Buffatti P. Surgical treatment of common peroneal nerve injuries: indications and results. A series of 62 cases. J Neurosurg Sci. 2004;48:105–12.

    PubMed  CAS  Google Scholar 

  26. Ipaktchi R, Radtke C, Aust M, Busche M, Vogt PM. On "Successful management of foot drop by nerve transfers to the deep peroneal nerve" (J Reconstr Microsurg 2008;24:419-428). J Reconstr Microsurg. 2010;26:425–6.

    Article  PubMed  Google Scholar 

  27. Seidel JA, Koenig R, Antoniadis G, Richter HP, Kretschmer T. Surgical treatment of traumatic peroneal nerve lesions. Neurosurgery. 2008;62:664–73.

    Article  PubMed  Google Scholar 

  28. Kim DH, Murovic JA, Tiel RL, Kline DG. Management and outcomes in 318 operative common peroneal nerve lesions at the Louisiana State University Health Sciences Center. Neurosurgery. 2004;54:1421–8.

    Article  PubMed  Google Scholar 

  29. Nath RK, Lyons AB, Paizi M. Successful management of foot drop by nerve transfers to the deep peroneal nerve. J Reconstr Microsurg. 2008;24:419–27.

    Article  PubMed  Google Scholar 

  30. Strazar R, White CP, Bain J. Foot reanimation via nerve transfer to the peroneal nerve using the nerve branch to the lateral gastrocnemius: case report. J Plast Reconstr Aesthet Surg. 2011;64:1380–2.

    Article  PubMed  Google Scholar 

  31. Giuffre JL, Bishop AT, Spinner RJ, Levy BA, Shin AY. Partial tibial nerve transfer to the tibialis anterior motor branch to treat peroneal nerve injury after knee trauma. Clin Orthop Relat Res. 2012;470:779–90. A description of an uncommon nerve transfer procedure and the resulting relatively poor outcomes in a small patient cohort, illustrating the caution one must exercise in using nerve transfers without understanding the underlying neuromuscular physiology.

    Article  PubMed  Google Scholar 

  32. Giuffre JL, Bishop AT, Spinner RJ, Shin AY. Surgical technique of a partial tibial nerve transfer to the tibialis anterior motor branch for the treatment of peroneal nerve injury. Ann Plast Surg. 2012;69:48–53.

    Article  PubMed  CAS  Google Scholar 

  33. Prasad AR, Steck JK, Dellon AL. Zone of traction injury of the common peroneal nerve. Ann Plast Surg. 2007;59:302–6.

    Article  PubMed  CAS  Google Scholar 

  34. Kemp SWP, Alant J, Walsh S, Webb AA, Midha R. Behavioural and anatomical analysis of selective tibial nerve branch transfer to the deep peroneal nerve in the rat. Eur J Neurosci. 2010;31:1074–90.

    Google Scholar 

  35. Campbell AA, Eckhauser FE, Belzberg A, Campbell JN. Obturator nerve transfer as an option for femoral nerve repair: case report. Neurosurgery. 2010;66:375.

    Article  PubMed  Google Scholar 

  36. Spiliopoulos K, Williams Z. Femoral branch to obturator nerve transfer for restoration of thigh adduction following iatrogenic injury. J Neurosurg. 2011;114:1529–33.

    Article  PubMed  Google Scholar 

  37. Bertelli JA, Ghizoni MF, Tacca CP. Transfer of the teres minor motor branch for triceps reinnervation in tetraplegia. J Neurosurg. 2011;114:1457–60.

    PubMed  Google Scholar 

  38. Bertelli JA, Tacca CP, Ghizoni MF, Kechele PR, Santos MA. Transfer of supinator motor branches to the posterior interosseous nerve to reconstruct thumb and finger extension in tetraplegia: case report. J Hand Surg Am. 2010;35:1647–51.

    Article  PubMed  Google Scholar 

  39. Mackinnon SE, Yee A, Ray WZ. Nerve transfers for the restoration of hand function after spinal cord injury. J Neurosurg. 2012;117:176–85. A well-documented case report on a new indication for nerve transfers with accompanying videos and review of the current state of the literature on the subject.

    Article  PubMed  Google Scholar 

  40. Brown JM. Nerve transfers in tetraplegia I: background and technique. Surg Neurol Int. 2011;2:121.

    Article  PubMed  Google Scholar 

  41. Sanjaya F, Midha R. Nerve transfer strategies for spinal cord injury. World Neurosurg. 2012. doi:10.1016/j.wneu.2012.10.001.

  42. Dorsi MJ, Belzberg AJ. Nerve transfers for restoration of upper extremity motor function in a child with upper extremity motor deficits due to transverse myelitis: case report. Microsurgery. 2012;32:64–7.

    Article  PubMed  Google Scholar 

  43. Oppenheim JS, Spitzer DE, Winfree CJ. Spinal cord bypass surgery using peripheral nerve transfers: review of translational studies and a case report on its use following complete spinal cord injury in a human. Experimental article. Neurosurg Focus. 2009;26:E6.

    Article  PubMed  Google Scholar 

  44. Williams HB. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study. Microsurgery. 1996;17:589–96.

    Article  PubMed  CAS  Google Scholar 

  45. Al Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20:2602–8.

    PubMed  CAS  Google Scholar 

  46. Al Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci. 2000;12:4381–90.

    PubMed  CAS  Google Scholar 

  47. Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci. 2002;22:6631–8.

    PubMed  CAS  Google Scholar 

  48. Singh B, Xu QG, Franz CK, Zhang R, Dalton C, Gordon T, Verge VM, Midha R, Zochodne DW. Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. J Neurosurg. 2012;116:498–512.

    Article  PubMed  Google Scholar 

  49. Gordon T, Amirjani N, Edwards DC, Chan KM. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol. 2010;223:192–202. The first randomized control trial in humans to demonstrate the benefit of an adjuvant therapy, in this case brief electrical stimulation, to improve outcome beyond those from conventional nerve surgery.

    Article  PubMed  Google Scholar 

  50. Bisby MA, Tetzlaff W, Brown MC. Cell body response to injury in motorneurons and primary sensory neurons of a mutant mouse, Ola (Wld), in which wallerian degeneration in delayed. J Comp Neurol. 1995;359:653–62.

    Article  PubMed  CAS  Google Scholar 

  51. Brown MC, Lunn ER, Perry VH. Poor growth of mammalian motor and sensory axons into intact proximal nerve stumps. Eur J Neurosci. 1991;3:1366–9.

    Article  PubMed  CAS  Google Scholar 

  52. Levi ADO, Guenard V, Aebischer P, Bunge RP. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci. 1994;14:1309–19.

    PubMed  CAS  Google Scholar 

  53. Levi ADO, Sonntag KH, Dickman C, Mather J, Li R-H, Cordoba SC, Bichard B, Berens M. The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates. Exp Neurol. 1997;143:25–36.

    Article  PubMed  CAS  Google Scholar 

  54. Heine W, Conant K, Griffin JW, Hoke A. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol. 2004;189:231–40.

    Article  PubMed  CAS  Google Scholar 

  55. Murakami T, Fujimoto Y, Yasunaga Y, Ishida O, Tanaka N, Ikuta Y, Ochi M. Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair. Brain Res. 2003;974:17–24.

    Article  PubMed  CAS  Google Scholar 

  56. Aquino JB, Hjerling-Leffler J, Koltzenburg M, Edlund T, Villar MJ, Ernfors P. In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol. 2006;198:438–49.

    Article  PubMed  CAS  Google Scholar 

  57. Cui L, Jiang J, Wei L, Zhou X, Fraser JL, Snider BJ, Yu SP. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26:1356–65.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson TS, O'Neill AC, Motarjem PM, Nazzal J, Randolph M, Snyder EY, Winograd JM. Tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model. J Reconstr Microsurg. 2008;24:545–50.

    Article  PubMed  Google Scholar 

  59. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6:e1000029.

    Article  PubMed  Google Scholar 

  60. Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci. 2001;14:1771–6.

    Article  PubMed  CAS  Google Scholar 

  61. Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006;26:1235–52.

    Article  PubMed  Google Scholar 

  62. Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, Wang CC, Wang WY, Huang YS, Hsu SH. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol. 2007;204:443–53.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang P, He X, Liu K, Zhao F, Fu Z, Zhang D, Zhang Q, Jiang B. Bone marrow stromal cells differentiated into functional Schwann cells in injured rats sciatic nerve. Artif Cells Blood Substit Immobil Biotechnol. 2004;32:509–18.

    Article  PubMed  CAS  Google Scholar 

  64. Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362:200–3.

    Article  PubMed  CAS  Google Scholar 

  65. Hu J, Zhu QT, Liu XL, Xu YB, Zhu JK. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol. 2007;204:658–66.

    Article  PubMed  Google Scholar 

  66. Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun. 2007;359:915–20.

    Article  PubMed  CAS  Google Scholar 

  67. Wang D, Liu XL, Zhu JK, Jiang L, Hu J, Zhang Y, Yang LM, Wang HG, Yi JH. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res. 2008;1188:44–53.

    Article  PubMed  CAS  Google Scholar 

  68. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207:267–74.

    Article  PubMed  CAS  Google Scholar 

  69. Xu Y, Liu L, Li Y, Zhou C, Xiong F, Liu Z, Gu R, Hou X, Zhang C. Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res. 2008;1239:49–55.

    Article  PubMed  CAS  Google Scholar 

  70. Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci USA. 2005;102:17734–8.

    Article  PubMed  CAS  Google Scholar 

  71. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6:1082–93.

    Article  PubMed  CAS  Google Scholar 

  72. McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26:6651–60.

    Article  PubMed  CAS  Google Scholar 

  73. Biernaskie JA, McKenzie IA, Toma JG, Miller FD. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protoc. 2006;1:2803–12.

    Article  PubMed  CAS  Google Scholar 

  74. Biernaskie J, Sparling JS, Liu J, Shannon CP, Plemel JR, Xie Y, Miller FD, Tetzlaff W. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci. 2007;27:9545–59.

    Article  PubMed  CAS  Google Scholar 

  75. Walsh SK, Gordon T, Addas BM, Kemp SW, Midha R. Skin-derived precursor cells enhance peripheral nerve regeneration following chronic denervation. Exp Neurol. 2010;223:221–8. This article demonstrates the tremendous potential of precursor cell therapy to dramatically alter the microenvironment of the chronically denervated nerve, making it highly favorable for nerve regeneration.

    Article  PubMed  CAS  Google Scholar 

  76. Walsh SK, Kumar R, Grochmal JK, Kemp SW, Forden J, Midha R. Fate of stem cell transplants in peripheral nerves. Stem Cell Res. 2012;8:226–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Helene Khuong, as a Peripheral Nerve Fellow at the University of Calgary, received funding through the Cloward Fellowship from the American Association of Neurological Surgeons/Congress of Neurological Surgeons Joint Section on Disorders of the Spine and Peripheral Nerves, the Denyse Lajoie-Lake Fellowship from the Hotchkiss Brain Institute, and Les Bourses McLaughlin du Doyen from Université Laval.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Midha.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khuong, H.T., Midha, R. Advances in Nerve Repair. Curr Neurol Neurosci Rep 13, 322 (2013). https://doi.org/10.1007/s11910-012-0322-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-012-0322-3

Keywords

Navigation