Skip to main content
Log in

Uric acid: Its relationship to renal hemodynamics and the renal renin-angiotensin system

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Reports relating hyperuricemia and hypertension have been fieled for many decades. Nevertheless, controversy remains concerning serum uric acid concentration as an independent risk factor underlying coronary heart disease (CHD) and essential hypertension or as an indirect marker of renovascular involvement. Earlier studies in normotensive subjects and hypertensive patients demonstrated that serum uric acid concentration was closely related to intrarenal hemodynamic alterations, suggesting that it is an excellent marker of vascular involvement. Our data from clinical studies and in an animal model of severe hypertensive nephrosclerosis have strengthened this concept. Conversely, other reports have suggested that uric acid may be a pathogenetic factor. Supporting arguments for this theory maintain that experimental hyperuricemia induces hypertension and renal damage. Epidemiologically, hyperuricemia is associated with hypertension, CHD, renal disease, toxemia of pregnancy, and other outcomes, although mechanisms remain unclear. Additionally, there are no available data on the effects of lowering uric acid on pressure control and organ protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Stanton JR, Freis ED: Serum uric acid concentration in essential hypertension. Proc Soc Exp Bio Med 1947, 66:193–194.

    CAS  Google Scholar 

  2. Rieselbach RE, Steele TH: Influence of the kidney upon urate homeostasis in health and disease. Am J Med 1974, 56:665–675.

    Article  PubMed  CAS  Google Scholar 

  3. Steele TH: Control of uric acid excretion. N Engl J Med 1971, 284:1193–1196.

    Article  PubMed  CAS  Google Scholar 

  4. Cannon PJ, Stason WB, Demartini FE, et al.: Hyperuricemia in primary and renal hypertension. N Engl J Med 1966, 275:457–464.

    Article  PubMed  CAS  Google Scholar 

  5. Breckenridge A: Hypertension and hyperuricaemia. Lancet 1966, 1:15–18.

    Article  PubMed  CAS  Google Scholar 

  6. Saggiani F, Pilati S, Targher G, et al.: Serum uric acid and related factors in 500 hospitalized subjects. Metabolism 1996, 45:1557–1561.

    Article  PubMed  CAS  Google Scholar 

  7. Frohlich ED: Uric acid: a risk factor for coronary heart disease. JAMA 1993, 21, 270:378–379.

    Article  Google Scholar 

  8. Verdecchia P, Schillaci G, Reboldi G, et al.: Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 2000, 36:1072–1078.

    PubMed  CAS  Google Scholar 

  9. Lam C, Lim KH, Kang DH, Karumanchi SA: Uric acid and preeclampsia. Semin Nephrol 2005, 25:56–60.

    Article  PubMed  CAS  Google Scholar 

  10. Facchini F, Chen YD, Hollenbeck CB, Reaven GM: Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 1991, 266:3008–3011.

    Article  PubMed  CAS  Google Scholar 

  11. Lee J, Sparrow D, Vokonas PS, et al.: Uric acid and coronary heart disease risk: evidence for a role of uric acid in the obesity-insulin resistance syndrome. The Normative Aging Study. Am J Epidemiol 1995, 142:288–294.

    PubMed  CAS  Google Scholar 

  12. Domrongkitchaiporn S, Sritara P, Kitiyakara C, et al.: Risk factors for development of decreased kidney function in a southeast Asian population: a 12-year cohort study. J Am Soc Nephrol 2005, 16:791–799.

    Article  PubMed  Google Scholar 

  13. Ferris TF, Gorden P: Effect of angiotensin and norepinephrine upon urate clearance in man. Am J Med 1968, 44:359–365.

    Article  PubMed  CAS  Google Scholar 

  14. Messerli FH, Frohlich ED, Dreslinski GR, et al.: Serum uric acid in essential hypertension: an indicator of renal vascular involvement. Ann Intern Med 1980, 93:817–821.

    PubMed  CAS  Google Scholar 

  15. Kobrin I, Frohlich ED, Ventura HO, Messerli FH: Renal involvement follows cardiac enlargement in essential hypertension. Arch Intern Med 1986, 146:272–276.

    Article  PubMed  CAS  Google Scholar 

  16. Nunez BD, Frohlich ED, Garavaglia GE, et al.: Serum uric acid in renovascular hypertension: reduction following surgical correction. Am J Med Sci 1987, 294:419–422.

    Article  PubMed  CAS  Google Scholar 

  17. Sesoko S, Pegram BL, Willis GW, Frohlich ED: DOCA-salt induced malignant hypertension in spontaneously hypertensive rats. J Hypertens 1984, 2:49–54.

    Article  PubMed  CAS  Google Scholar 

  18. Ono H, Ono Y, Frohlich ED: ACE inhibition prevents and reverses L-NAME-exacerbated nephrosclerosis in spontaneously hypertensive rats. Hypertension 1996, 27:176–183.

    PubMed  CAS  Google Scholar 

  19. Francischetti A, Ono H, Frohlich ED: Renoprotective effects of felodipine and /or enalapril in spontaneously hypertensive rats with and without L-NAME. Hypertension 1998, 31:795–801.

    PubMed  CAS  Google Scholar 

  20. Nakamura Y, Ono H, Zhou X, Frohlich ED: Angiotensin type 1 receptor antagonism and ACE inhibition produce similar renoprotection in N-nitro-L-arginine methyl ester/spontaneously hypertensive rats. Hypertension 2001, 37:1262–1267.

    PubMed  CAS  Google Scholar 

  21. Zhou X, Ono H, Ono Y, Frohlich ED: N- and L-type calcium channel antagonist improves glomerular dynamics, reverses severe nephrosclerosis, and inhibits apoptosis and proliferation in an L-NAME/SHR model. J Hypertens 2002, 20:993–1000.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou X, Ono H, Ono Y, Frohlich ED: Renoprotective effects of omapatrilat are mediated partially by bradykinin. Am J Nephrol 2003, 23:214–221.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou X, Ono H, Ono Y, Frohlich ED: Aldosterone antagonism ameliorates proteinuria and nephrosclerosis independent of glomerular dynamics in L-NAME/SHR model. Am J Nephrol 2004, 24:242–249.

    Article  PubMed  CAS  Google Scholar 

  24. Ono H, Ono Y, Frohlich ED: Nitric oxide synthesis inhibition in spontaneously hypertension rats: systemic, renal, and glomerular hemodynamics. Hypertension 1995, 26:249–255.

    PubMed  CAS  Google Scholar 

  25. Frohlich ED: Arthur C. Corcoran Memorial Lecture: influence of nitric oxide and angiotensin II on renal involvement in hypertension. Hypertension 1997, 29:188–193.

    PubMed  CAS  Google Scholar 

  26. Zhou X, Frohlich ED: Differential effects of antihypertensive drugs on renal and glomerular hemodynamics and injury in the chronic nitric oxide suppressed rats. Am J Nephrol 2005, 25:138–152.

    Article  PubMed  CAS  Google Scholar 

  27. Johnson RJ, Kang DH, Feig D, et al.: Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003, 41:1183–1190. This review exclusively summarizes experimental and epidemiologic evidence of uric acid as a risk factor for hypertension and cardiovascular disease.

    Article  PubMed  CAS  Google Scholar 

  28. Mazzali M, Hughes J, Kim YG, et al.: Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001, 38:1101–1106. This study explored the possible mechanisms by which mild hyperuricemia induces hypertension and renal injury.

    PubMed  CAS  Google Scholar 

  29. Sanchez-Lozada LG, Tapia E, Avila-Casado C, et al.: Mild hyperuricemia induces glomerular hypertension in normal rats. Am J Physiol Renal Physiol 2002, 283:F1105-F1110.

    PubMed  Google Scholar 

  30. Mazzali M, Kanellis J, Han L, et al.: Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol 2002, 282:F991-F997.

    PubMed  CAS  Google Scholar 

  31. Nakagawa T, Mazzali M, Kang DH, et al.: Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol 2003, 23:2–7.

    Article  PubMed  Google Scholar 

  32. Kang DH, Nakagawa T, Feng L, et al.: A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002, 13:2888–2897.

    Article  PubMed  CAS  Google Scholar 

  33. Sanchez-Lozada LG, Tapia E, Santamaria J, et al.: Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 2005, 67:237–247.

    Article  PubMed  Google Scholar 

  34. Johnson RJ, Feig DI, Herrera-Acosta J, Kang DH: Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension 2005, 45:18–20.

    Article  PubMed  CAS  Google Scholar 

  35. Feig DI, Johnson RJ: Hyperuricemia in childhood primary hypertension. Hypertension 2003, 42:247–252. The results of this study in children suggest that uric acid might have a role in the early pathogenesis of primary hypertension.

    Article  PubMed  CAS  Google Scholar 

  36. Alper AB Jr, Chen W, Yau L, et al.: Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension 2005, 45:34–38. Data from the Bogalusa Heart Study showed that elevated childhood serum uric acid levels predict the development of hypertension in adulthood, supporting the causal role of uric acid in human hypertension.

    PubMed  CAS  Google Scholar 

  37. Johnson RJ, Kivlighn SD, Kim YG, et al.: Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease. Am J Kidney Dis 1999, 33:225–234.

    PubMed  CAS  Google Scholar 

  38. Syrjanen J, Mustonen J, Pasternack A: Hypertriglyceridaemia and hyperuricaemia are risk factors for progression of IgA nephropathy. Nephrol Dial Transplant 2000, 15:34–42.

    Article  PubMed  CAS  Google Scholar 

  39. Ohno I, Hosoya T, Gomi H, et al.: Serum uric acid and renal prognosis in patients with IgA nephropathy. Nephron 2001, 87:333–339.

    Article  PubMed  CAS  Google Scholar 

  40. Fang J, Alderman MH: Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA 2000, 283:2404–2410.

    Article  PubMed  CAS  Google Scholar 

  41. Hoieggen A, Alderman MH, Kjeldsen SE, et al.: The impact of serum uric acid on cardiovascular outcomes in the LIFE study. LIFE Study Group. Kidney Int 2004, 65:1041–1049.

    Article  PubMed  CAS  Google Scholar 

  42. Culleton BF, Larson MG, Kannel WB, Levy D: Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 1999, 131:7–13.

    PubMed  CAS  Google Scholar 

  43. Rao GN, Corson MA, Berk BC: Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. J Biol Chem 1991, 266:8604–8608.

    PubMed  CAS  Google Scholar 

  44. Netea MG, Kullberg BJ, Blok WL, et al.: The role of hyperuricemia in the increased cytokine production after lipopolysaccharide challenge in neutropenic mice. Blood 1997, 89:577–582.

    PubMed  CAS  Google Scholar 

  45. Kanellis J, Watanabe S, Li JH, et al.: Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 2003, 41:1287–1293.

    Article  PubMed  CAS  Google Scholar 

  46. Khosla UM, Zharikov S, Finch JL, et al.: Hyperuricemia induces endothelial dysfunction. Kidney Int 2005, 67:1739–1742.

    Article  PubMed  Google Scholar 

  47. Perlstein TS, Gumieniak O, Hopkins PN, et al.: Uric acid and the state of the intrarenal renin-angiotensin system in humans. Kidney Int 2004, 66:1465–1470.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Frohlich MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Matavelli, L. & Frohlich, E.D. Uric acid: Its relationship to renal hemodynamics and the renal renin-angiotensin system. Current Science Inc 8, 120–124 (2006). https://doi.org/10.1007/s11906-006-0007-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-006-0007-x

Keywords

Navigation