Skip to main content

Advertisement

Log in

Oxidative stress and vascular damage in hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Metabolism of oxygen by cells generates potentially deleterious reactive oxygen species, including superoxide anion radical, hydrogen peroxide, and hydroxyl radical. Under normal physiologic conditions the rate and magnitude o oxidant formation is balanced by the rate of oxidant elimination. However, an imbalance between prooxidants and antioxidants results in oxidative stress, which is the pathogenic outcome of the overproduction of oxidants that overwhelms the cellular antioxidant capacity. There is increasing evidence that an elevation of oxidative stress and associated oxidative damages are mediators of vascular injury in various cardiovascular pathologies, including hypertension, atherosclerosis, and ischemia-reperfusion. This review focuses on the vascular effects of reactive oxygen species and the role of oxidative stress in vascular damage in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cosentino F, Sill JC, Katusic ZS: Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 1994, 23:229–235.

    PubMed  CAS  Google Scholar 

  2. Touyz RM, Schiffrin EL: Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999, 34(Part 2):976–982. The first study to show that phospholipase D-dependent pathways regulate NADH/NADPH oxidase-generated superoxide in human vascular smooth muscle cells.

    PubMed  CAS  Google Scholar 

  3. Zafari AM, Ushio-Fukai M, Akers M, et al.: Role of NADH/ NADPH oxidase-derived H 2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998, 32:488–495.

    PubMed  CAS  Google Scholar 

  4. Rao GN, Berk BC: Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992, 70:593–599.

    PubMed  CAS  Google Scholar 

  5. Harrison DG: Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997, 2153–2157. An excellent review on the mechanisms that impair endotheliumdependent function.

  6. Chin JH, Azhar S, Hoffman BB: Inactivation of endotheliumderived relaxing factor by oxidized lipoproteins. J Clin Invest 1992, 89:10–18.

    PubMed  CAS  Google Scholar 

  7. Wei EP, Kontos HA, Christman CW: Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension. Circ Res 1985, 57:781–787.

    PubMed  CAS  Google Scholar 

  8. Laursen JB, Rajagopalan S, Galis Z, et al.: Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997, 95:588–593. The first in-depth study to demonstrate a link between angiotensin II-induced hypertension and oxidative stress. This study also shows that superoxide plays a role in angiotensin II-induced hypertension but not in norepinephrine-induced hypertension.

    PubMed  CAS  Google Scholar 

  9. Kerr S, Brosnan J, McIntyre M: Superoxide anion production is increased in a model of genetic hypertension. Role of endothelium. Hypertension 1999, 33:1353–1358.

    PubMed  CAS  Google Scholar 

  10. Wang D, Hope S, Du Y, et al.: Paracrine role of adventitial superoxide anion in mediating spontaneous tone of the isolated rat aorta in angiotensin II-induced hypertension. Hypertension 1999, 33:1225–1232.

    PubMed  CAS  Google Scholar 

  11. Schnackenberg CG, Welch W, Wilcox CS: Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic. Role of nitric oxide. Hypertension 1999, 32:59–64.

    Google Scholar 

  12. Chappel LC, Seed PT, Briley AL, et al.: Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomized trial. Lancet 1999, 354:810–816.

    Google Scholar 

  13. Sharma RC, Hodis HN, Mack WJ, et al.: Probucol suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence. Am J Hypertens 1996, 9:577–590.

    Article  PubMed  CAS  Google Scholar 

  14. Fridovich I: Superoxide anion radical, superoxide dismutases, and related matters . J Biol Chem 1997, 272:18515–18517.

    Article  PubMed  CAS  Google Scholar 

  15. Darley-Usmar V, Wiseman H, Halliwell B: Nitric oxide and oxygen radicals; a question of balance. FEBS Lett 1995, 369:131–135.

    Article  PubMed  CAS  Google Scholar 

  16. Abe J-I, Berk BC: Reactive oxygen species of signal transduction in cardiovascular disease. Trends Cardiovasc Med 1998, 8:59–64. A detailed review of the signaling pathways through which reactive oxygen species mediate vascular effects.

    Article  CAS  Google Scholar 

  17. Puig JG, Ruilope LM: Uric acid as a cardiovascular risk factor in arterial hypertension. J Hypertens 1999, 17:869–872.

    Article  PubMed  CAS  Google Scholar 

  18. Griendling KK, Ushio-Fukai M: NADH/NADPH oxidase and vascular function. Trends Cardiovasc Med 1997, 301–307. Excellent review on the structure, function and regulation of the vascular NADH/NADPH oxidase system.

  19. Rajagopalan S, Kurz S, Munzel T: Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 1996, 97:1916–1923.

    PubMed  CAS  Google Scholar 

  20. De Leo FR, Ulman KV, Davis AR, et al.: Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 1996, 271:17013–17020.

    Article  PubMed  Google Scholar 

  21. Jones SA, O’Donnell VB, Wood JD: Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol 1996, 271:H1626-H1634.

    PubMed  CAS  Google Scholar 

  22. Azumimi H, Inoue N, Takeshita S, et al.: Expression of NADH/ NADPH oxidase p22phox in human coronary arteries. Circulation 1999, 100:1494–1498.

    Google Scholar 

  23. Marumo T, Schini-Kerth VB, Brandes RP, Busse R: Glucocorticoids inhibit superoxide anion production and p22phox mRNA expression in human aortic smooth muscle cells. Hypertension 1999, 32:1083–1088.

    Google Scholar 

  24. Suh YA, Arnold RS, Lassegue B, et al.: Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999, 410:79–82. The first study to demonstrate that mox1 is expressed in nonphagocytic cells, and that it may be the vascular counterpart of neutrophil gp91phox.

    Google Scholar 

  25. McIntyre M, Bohr DF, Dominiczak AF: Endothelial function in hypertension. The role of superoxide anion. Hypertension 1999, 34:539–545. This review discusses the relationship between superoxide anion and nitric oxide, and the implications in endothelial dysfunction.

    PubMed  CAS  Google Scholar 

  26. De Keulener GW, Alexander RW, Ushio-Fukai M: Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 1998, 329:653–657.

    Google Scholar 

  27. Sundaresan M, Yu ZX, Ferrans VJ, et al.: Requirement for generation of H2O2 for PDGF signal transduction. Science 1995, 270:296–299.

    Article  PubMed  CAS  Google Scholar 

  28. Finkel T: Oxygen radicals and signaling. Curr Opin Cell Biol 1998, 10:248–253.

    Article  PubMed  CAS  Google Scholar 

  29. Ushio-Fukai M, Zafari AM, Fukui T, et al.: p22phox is a critical component of the superoxide of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996, 271:23317–23321.

    Article  PubMed  CAS  Google Scholar 

  30. Tsai MH, Yu CL, Stacey DW: A cytoplasmic protein inhibits the GTPase activity of H-Ras in a phospholipid-dependent manner. Science 1990, 250:982–985.

    Article  PubMed  CAS  Google Scholar 

  31. Brown MR, Miller FJ, Li W-G, et al.: Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 1999, 85:524–533.

    PubMed  CAS  Google Scholar 

  32. Griendling KK, Harrison DG: Dual role of reactive oxygen species in vascular growth. Circ Res 1999, 85:562–563.

    PubMed  CAS  Google Scholar 

  33. Rajagopalan S, Meng XP, Ramasamy S, et al.: Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J Clin Invest 1996, 98:2572–2579.

    Article  PubMed  CAS  Google Scholar 

  34. Hu Q, Corda S, Zweier JL, et al.: Hydrogen peroxide induces intracellular calcium oscillations in human aortic endothelial cells. Circulation 1998, 97:268–275.

    PubMed  CAS  Google Scholar 

  35. Sabri A, Byron KL, Samarel AM, et al.: Hydrogen peroxide activates MAP kinases and Na+/H+ exchange in neonatal rat cardiomyocytes. Circ Res 1998, 82:1053–1062.

    PubMed  CAS  Google Scholar 

  36. Somers MJ, Harrison DG: Reactive oxygen species and the control of vasomotor tone. Current Hypertension Reports 1999, 1:102–108.

    PubMed  CAS  Google Scholar 

  37. Fukui T, Ishizaka N, Rajagopalan S: p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997, 80:45–51.

    PubMed  CAS  Google Scholar 

  38. Fukai T, Siegfried MR, Ushio-Fukai M, et al.: Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res 1999, 85:23–28. This paper clearly demonstrates that in hypertension, Ang II induces upregulation of vascular superoxide dismutase expression and activity.

    PubMed  CAS  Google Scholar 

  39. Suzuki H, DeLano FA, Parks DA, et al.: Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci USA 1998, 95:4754–4759.

    Article  PubMed  CAS  Google Scholar 

  40. White BH, Sidhu A: Increased oxidative stress in renal proximal tubules of the SHR: a mechanism for defective dopamine D1A receptor/G -protein coupling. J Hypertens 1998, 16:1659–1665.

    Article  PubMed  CAS  Google Scholar 

  41. Negishi H, Ikeda K, Sagara M, Sawamura Y: Increased oxidative DNA damage in stroke-prone SHR. Clin Exp Pharmacol Physiol 1999, 26:482–484.

    Article  PubMed  CAS  Google Scholar 

  42. Singh RB, Niaz MA, Rastogi SS, et al.: Effect of hydrosoluble coenzyme Q10 on blood pressures and insulin resistance in hypertensive patients with coronary artery disease. J Hum Hypertens 1999, 13:203–208.

    Article  PubMed  CAS  Google Scholar 

  43. Koska J, Syrova D, Blazicek P, et al.: Malondialdehyde, lipofuscin and activity of antioxidant enzymes during physical exercise in patients with essential hypertension. J Hypertens 1999, 17:529–535.

    Article  PubMed  CAS  Google Scholar 

  44. Akpaffiong MJ, Taylor AA: Antihypertensive and vasodilator actions of antioxidants in SHR. Am J Hypertens 1998, 11:1450–1460.

    Article  PubMed  CAS  Google Scholar 

  45. Nunes GL, Sgoutas DS, Redden RA: Combination of vitamins C and E alters the response to coronary balloon injury in the pig. Arterioscler Thromb Vasc Biol 1995, 15:156–165.

    PubMed  CAS  Google Scholar 

  46. Nakazono K, Watanabe N, Matsuno S, et al.: Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 1991, 88:10045–10048.

    Article  PubMed  CAS  Google Scholar 

  47. Tschudi M, Mesaros S, Luscher TF, Malinski T: Direct in situ measurement of nitric oxide in mesenteric resistance arteries: increased decomposition by superoxide in hypertension. Hypertension 1996, 27:32–35.

    PubMed  CAS  Google Scholar 

  48. Kurose I, Wolf R, Cerwinka W, Granger DN: Microvascular responss to ischemia/reperfusion in normotensive and hypertensive rats. Hypertension 1999, 34:212–216.

    PubMed  CAS  Google Scholar 

  49. Kristal B, Shurtz-Swirrski R, Chezar J, et al.: Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. Am J Hypertens 1998, 11:921–928.

    Article  PubMed  CAS  Google Scholar 

  50. Alexander RW: Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995, 25:155–161.

    PubMed  CAS  Google Scholar 

  51. Aminbakhsh A, Mancini GBJ: Chronic antioxidant use and changes in endothelial dysfunction: a review of clinical investigations. Can J Cardiol 1999, 15:895–903.

    PubMed  CAS  Google Scholar 

  52. Parik T, Alliikmmets K, Teesalu R, Zilmer M: Evidence for oxidative stress in essential hypertension: perspective for antioxidant therapy. J Cardiovasc Risk 1996, 3:49–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touyz, R.M. Oxidative stress and vascular damage in hypertension. Current Science Inc 2, 98–105 (2000). https://doi.org/10.1007/s11906-000-0066-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-000-0066-3

Keywords

Navigation