Skip to main content

Advertisement

Log in

Checkpoint Inhibitors: Applications for Autoimmunity

  • Autoimmunity (TK Tarrant, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

To limit excessive T cell-mediated inflammatory responses, the immune system has a milieu of inhibitory receptors, called immune checkpoints. Cancer cells have evolved to seize those inhibitory pathways and to prevent T cell-mediated killing of tumor cells. Therefore, immune checkpoint inhibitors (ICI) consisting of blocking antibodies against these receptors present an exciting avenue in the fight against cancer. The last decade has seen the implementation of ICI against a variety of cancer indications that have improved the overall anti-tumor responses and patient survival. However, inflammatory toxicities and autoimmunity are a significant adverse event of ICI therapies. In this review, we will discuss the biology of immune checkpoints, highlight research strategies that may help reduce the incidence of immune-related adverse events associated with ICI therapies, and also suggest investigational approaches to manipulate immune checkpoints to treat primary autoimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol. 2013;31:137–61.

    Article  CAS  PubMed  Google Scholar 

  2. • Toxicities associated with checkpoint inhibitor immunotherapy [Internet]. 2017 [cited Jul 16, 2017]. Available from: https://www.uptodate.com/contents/toxicities-associated-with-checkpoint-inhibitor-immunotherapy. These series highligths the most up-to-date clinical epidemiology of immune checkpoint inhibitor therapies and provides guidelines for irAE management.

  3. Gangadhar TC, Vonderheide RH. Mitigating the toxic effects of anticancer immunotherapy. Nat Rev Clin Oncol. 2014;11(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z, et al. Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem. 2012;287(12):9429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valk E, Leung R, Kang H, Kaneko K, Rudd CE, Schneider H. T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity. 2006;25(5):807–21.

    Article  CAS  PubMed  Google Scholar 

  9. Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifacino JS, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 1997;6(5):583–9.

    Article  CAS  PubMed  Google Scholar 

  10. Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature. 2001;410(6828):608–11.

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 2001;410(6828):604–8.

    Article  CAS  PubMed  Google Scholar 

  12. •• Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3. This report demonstrates that CTLA-4 acts as molecular decoy that depletes APC surface expressed CD80 and CD86 thus limiting CD28 co-stimulation by cell-extrinsic depletion of its ligands

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, et al. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313(5795):1972–5.

    Article  CAS  PubMed  Google Scholar 

  14. Ruocco MG, Pilones KA, Kawashima N, Cammer M, Huang J, Babb JS, et al. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J Clin Invest. 2012;122(10):3718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miska J, Abdulreda MH, Devarajan P, Lui JB, Suzuki J, Pileggi A, et al. Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance. J Exp Med. 2014;211(3):441–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu Y, Schneider H, Rudd CE. Murine regulatory T cells differ from conventional T cells in resisting the CTLA-4 reversal of TCR stop-signal. Blood. 2012;120(23):4560–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fraser JH, Rincon M, McCoy KD, Le Gros G. CTLA4 ligation attenuates AP-1, NFAT and NF-kappaB activity in activated T cells. Eur J Immunol. 1999;29(3):838–44.

    Article  CAS  PubMed  Google Scholar 

  18. Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science. 1996;272(5265):1170–3.

    Article  CAS  PubMed  Google Scholar 

  19. Teft WA, Chau TA, Madrenas J. Structure-function analysis of the CTLA-4 interaction with PP2A. BMC Immunol. 2009;10:23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. • Yokosuka T, Kobayashi W, Takamatsu M, Sakata-Sogawa K, Zeng H, Hashimoto-Tane A, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity. 2010;33(3):326–39. This study examines in real-time the functional consequences of CTLA-4 competition with CD28 and demonstrates that CTLA-4-mediated suppresion at the central-supramolecular activation cluster (cSMAC) involves the inhibition of PKCθ and CARMA1 clustering at the cSMAC

    Article  CAS  PubMed  Google Scholar 

  21. Baroja ML, Vijayakrishnan L, Bettelli E, Darlington PJ, Chau TA, Ling V, et al. Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol. 2002;168(10):5070–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, et al. Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat Immunol. 2014;15(5):465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory receptors beyond T cell exhaustion. Front Immunol. 2015;6:310.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. This study employs dynamic imaging to demonstrate that following ligation PD-1 translocates to the cSMAC and dephosphorylates TCR proximal signaling proteins by recruiting the tyrosine phosphate SHP-2 to its ITSM domain

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R, et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A. 2013;110(27):E2480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang TT, Martinov T, Xin L, Kinder JM, Spanier JA, Fife BT, et al. Programmed death-1 culls peripheral accumulation of high-affinity autoreactive CD4 T cells to protect against autoimmunity. Cell Rep. 2016;17(7):1783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14(12):1212–8.

    Article  CAS  PubMed  Google Scholar 

  28. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal. 2012;5(230):ra46.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med. 2010;16(10):1147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 2014;74(13):3418–28.

    Article  CAS  PubMed  Google Scholar 

  32. Workman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169(10):5392–5.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6(12):1245–52.

    Article  CAS  PubMed  Google Scholar 

  34. Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517(7534):386–90.

    Article  CAS  PubMed  Google Scholar 

  35. •• Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med. 2012;18(9):1394–400. This is the first report that identifies Bat3 as a TIM-3 binding partner and repressor of TIM-3 mediated inhibition

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yasuda K, Nagafuku M, Shima T, Okada M, Yagi T, Yamada T, et al. Cutting edge: Fyn is essential for tyrosine phosphorylation of Csk-binding protein/phosphoprotein associated with glycolipid-enriched microdomains in lipid rafts in resting T cells. J Immunol. 2002;169(6):2813–7.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT, et al. Identification of CD112R as a novel checkpoint for human T cells. J Exp Med. 2016;213(2):167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. • Liu S, Zhang H, Li M, Hu D, Li C, Ge B, et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 2013;20(3):456–64. This report demonstrates that TIGIT inhibition of NK cell function is mediated via its phosphorylated ITT-like motif by recruiting the adaptor protein Grb2, which acts as a docking site for the lipid phosphatase SHIP-1, leading to the inhibition of PI3K and MAPK signaling

    Article  CAS  PubMed  Google Scholar 

  39. Li M, Xia P, Du Y, Liu S, Huang G, Chen J, et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem. 2014;289(25):17647–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol. 2011;186(3):1338–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. •• Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med. 2011;208(3):577–92. This report identified VISTA as the youngest member of the inhibitory receptor family

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang L, Le Mercier I, Putra J, Chen W, Liu J, Schenk AD, et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc Natl Acad Sci U S A. 2014;111(41):14846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, et al. Immunoregulatory functions of VISTA. Immunol Rev. 2017;276(1):66–79.

    Article  CAS  PubMed  Google Scholar 

  44. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S, et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 2014;74(7):1924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ouyang W, Xue J, Liu J, Jia W, Li Z, Xie X, et al. Establishment of an ELISA system for determining soluble LAIR-1 levels in sera of patients with HFRS and kidney transplant. J Immunol Methods. 2004;292(1–2):109–17.

    Article  CAS  PubMed  Google Scholar 

  46. Sathish JG, Johnson KG, Fuller KJ, LeRoy FG, Meyaard L, Sims MJ, et al. Constitutive association of SHP-1 with leukocyte-associated Ig-like receptor-1 in human T cells. J Immunol. 2001;166(3):1763–70.

    Article  CAS  PubMed  Google Scholar 

  47. Maasho K, Masilamani M, Valas R, Basu S, Coligan JE, Borrego F. The inhibitory leukocyte-associated Ig-like receptor-1 (LAIR-1) is expressed at high levels by human naive T cells and inhibits TCR mediated activation. Mol Immunol. 2005;42(12):1521–30.

    Article  CAS  PubMed  Google Scholar 

  48. Hurchla MA, Sedy JR, Gavrieli M, Drake CG, Murphy TL, Murphy KM. B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly induced in anergic CD4+ T cells. J Immunol. 2005;174(6):3377–85.

    Article  CAS  PubMed  Google Scholar 

  49. Gavrieli M, Watanabe N, Loftin SK, Murphy TL, Murphy KM. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun. 2003;312(4):1236–43.

    Article  CAS  PubMed  Google Scholar 

  50. Haymaker C, Wu R, Ritthipichai K, Bernatchez C, Forget M-A, Chen JQ, et al. Uncovering a novel function of BTLA on tumor-infiltrating CD8+ T cells. J ImmunoTher Cancer. 2013;1(Suppl 1):O1.

    Article  PubMed Central  Google Scholar 

  51. Steinberg MW, Turovskaya O, Shaikh RB, Kim G, McCole DF, Pfeffer K, et al. A crucial role for HVEM and BTLA in preventing intestinal inflammation. J Exp Med. 2008;205(6):1463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iwata A, Watanabe N, Oya Y, Owada T, Ikeda K, Suto A, et al. Protective roles of B and T lymphocyte attenuator in NKT cell-mediated experimental hepatitis. J Immunol. 2010;184(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  53. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7.

    Article  CAS  PubMed  Google Scholar 

  54. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270(5238):985–8.

    Article  CAS  PubMed  Google Scholar 

  55. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.

    Article  CAS  PubMed  Google Scholar 

  56. Lo B, Fritz JM, Su HC, Uzel G, Jordan MB, Lenardo MJ. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood. 2016;128(8):1037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verma N, Burns SO, Walker LS, Sansom DM. Immune deficiency and autoimmunity in patients with CTLA-4 mutations. Clin Exp Immunol. 2017;190(1):1–7.

  58. •• Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med. 2015;212(10):1603–21. This is a unique study that investigates the consequences of conditional CTLA-4 deletion in adult mice, which surprisingly found that CTLA-4 acts as a negative regulator of T REG function and, in contrast to the authors’ expectations, found that punctual CTLA-4 deletion in adult mice led to reduced EAE susceptibility as well as reduced capacity to clear tomors

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kavanagh B, O’Brien S, Lee D, Hou Y, Weinberg V, Rini B, et al. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood. 2008;112(4):1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, Vignali KM, et al. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci Immunol. 2017;31(9):2.

  61. Zhang B, Chikuma S, Hori S, Fagarasan S, Honjo T. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc Natl Acad Sci U S A. 2016;113(30):8490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129(15):2186–97.

    Article  PubMed  Google Scholar 

  63. De Somer L, Fevery S, Bullens DM, Rutgeerts O, Lenaerts C, Mathieu C, et al. Murine bone marrow chimeras developing autoimmunity after CTLA-4-blockade show an expansion of T regulatory cells with an activated cytokine profile. Immunol Lett. 2010;133(1):49–53.

    Article  PubMed  Google Scholar 

  64. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–27.

    Article  CAS  PubMed  Google Scholar 

  65. • Yu W, Jiang N, Ebert PJ, Kidd BA, Muller S, Lund PJ, et al. Clonal deletion prunes but does not eliminate self-specific alphabeta CD8(+) T lymphocytes. Immunity. 2015;42(5):929–41. This is one of a series of reports (see also ref. 66 and 67) demonstrating that healthy individuals harbour self-reactive circulating T cells emphasizing that clonal deletion is one mechanism amongst others contributing rather than being critical for immune tolerance

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maeda Y, Nishikawa H, Sugiyama D, Ha D, Hamaguchi M, Saito T, et al. Detection of self-reactive CD8(+) T cells with an anergic phenotype in healthy individuals. Science. 2014;346(6216):1536–40.

    Article  CAS  PubMed  Google Scholar 

  67. Legoux FP, Lim JB, Cauley AW, Dikiy S, Ertelt J, Mariani TJ, et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity. 2015;43(5):896–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Postow M, Wolchok J. Toxicities associated with checkpoint inhibitor immunotherapy 2017 [cited 2017 06/07/2017]. Available from: https://www.uptodate.com/contents/toxicities-associated-with-checkpoint-inhibitor-immunotherapy.

  69. Hughes J, Vudattu N, Sznol M, Gettinger S, Kluger H, Lupsa B, et al. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care. 2015;38(4):e55–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mellati M, Eaton KD, Brooks-Worrell BM, Hagopian WA, Martins R, Palmer JP, et al. Anti-PD-1 and anti-PDL-1 monoclonal antibodies causing type 1 diabetes. Diabetes Care. 2015;38(9):e137–8.

    Article  CAS  PubMed  Google Scholar 

  71. Laubli H, Balmelli C, Bossard M, Pfister O, Glatz K, Zippelius A. Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J Immunother Cancer. 2015;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev. 2005;204:102–15.

    Article  CAS  PubMed  Google Scholar 

  73. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239–45.

    Article  CAS  PubMed  Google Scholar 

  74. Munthe-Kaas MC, Carlsen KH, Helms PJ, Gerritsen J, Whyte M, Feijen M, et al. CTLA-4 polymorphisms in allergy and asthma and the TH1/TH2 paradigm. J Allergy Clin Immunol. 2004;114(2):280–7.

    Article  CAS  PubMed  Google Scholar 

  75. Lee J, Phong B, Egloff AM, Kane LP. TIM polymorphisms—genetics and function. Genes Immun. 2011;12(8):595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397–404 e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abril-Rodriguez G, Ribas A. SnapShot: immune checkpoint inhibitors. Cancer Cell. 2017;31(6):848- e1.

    Article  Google Scholar 

  78. •• Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23. A review article by Ribas et al. summarizing the most recent findings (see ref. 76–79) associated with the development of resistance to cancer immunotherapy and alternative strategies that are being developed in order to prevent it

    Article  CAS  PubMed  Google Scholar 

  79. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The project was supported by NIH grant (1R01AI125640-02), Rheumatology Research Foundation, and the Colton family scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna S. Tocheva or Adam Mor.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Autoimmunity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tocheva, A.S., Mor, A. Checkpoint Inhibitors: Applications for Autoimmunity. Curr Allergy Asthma Rep 17, 72 (2017). https://doi.org/10.1007/s11882-017-0740-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0740-z

Keywords

Navigation