Skip to main content
Log in

Inverse Scattering of Canonical Systems and Their Evolution

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this work we present an analogue of the inverse scattering for canonical systems using theory of vessels and associated to them completely integrable systems. Analytic coefficients fits into this setting, significantly expanding the class of functions for which the inverse scattering exists. We also derive an evolutionary equation, arising from canonical systems, which describes an evolution of the logarithmic derivative of the tau function, associated to these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. At the paper [11] a similar result is proved for functions symmetric with respect to the unit circle, but it can be translated using Calley transform into \(S^*(-\bar{\lambda }) \sigma _1 S(\lambda ) = \sigma _1\) and was done in [4, 22].

References

  1. Arov, D.Z., Dym, H.: J-inner matrix functions, interpolation and inverse problems for canonical systems, V: The inverse input scattering problem for Wiener class and rational pxq input scattering matrices. Integral Equ. Op. Theory 43(1), 68–129 (2002)

    Article  MathSciNet  Google Scholar 

  2. Alpay, D., Gohberg, I.: Inverse spectral problems for differential operators with rational scattering matrix functions. J. Differ. Equ. 118, 1–19 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpay, D., Gohberg, I., Kaashoek, M.A., Sakhnovich, A.L.: Direct and inverse scattering problem for canonical systems with a strictly pseudo: exponential potential. Mathematische Nachrichten 215(1), 5–31 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpay, D., Melnikov, A., Vinnikov, V.: Schur algorithm in the class \(I\) of \(J\)-contractive functions intertwining solutions of linear differential equations. IEOT 74(3), 313–344 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Ball, J., Gohberg, I., Rodman, L.: Interpolation of Rational Matrix Functions. Operator Theory: Advances and Applications. Birkhäuser, Basel (1990)

    Book  Google Scholar 

  6. Brodskii, M.S., Livšic, M.S.: Spectral analysis of non-self-adjoint operators and intermediate systems (Russian). Uspehi Mat. Nauk N. S. 13(1), 3–85 (1958)

    MathSciNet  Google Scholar 

  7. Boas Jr, R.P.: The Stieltjes moment problem for functions of bounded variation. Bull. Am. Math. Soc. 45(6), 399–404 (1939)

    Article  MathSciNet  Google Scholar 

  8. de Branges, L., Rovnyak, J.: Canonical Models in Quantum Scattering Theory. Perturbation Theory and its Applications in Quantum Mechanics, pp 295–392 (1966)

  9. Brodskiĭ, M.S.: Triangular and Jordan Representations of Linear Operators. Translations of mathematical monographs. AMS (1971)

  10. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equation. Mc-Graw Hill, New York (1955)

    Google Scholar 

  11. Diksma, A., Langer, H., de Snoo, H.S.V.: Representations of holomorphic operator functions by means of resolvents of unitary or self-adjoint operators in Krein spaces. Op. Theory Adv. App. 24, 123–143 (1987)

    Google Scholar 

  12. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  13. Fadeev, L.D.: The inverse problem in the quantum theory of scattering, II English translation. Itogi Nauk. i Techn. 4, 93–180 (1974)

    Google Scholar 

  14. Gasymov, M.G.: Inverse problem of scattering theory for a system of Dirac equations of order 2n. Tr. Mosc. Matem. O-va 19, 41–112 (1968)

    MathSciNet  Google Scholar 

  15. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  16. Kaashoek, M.A., Gohberg, I., Sakhnovich, A.L.: Canonical systems with rational spectral densities: explicit formulas and applications. Math. Nachr. 149, 93–125 (1998)

    MathSciNet  Google Scholar 

  17. Krein, M.G., Melik-Adamyan, F.E.: Theory of S-matrices of canonical differential equations with summable potential. Dokl. Akad. Nauk SSSR 46(14), 150–155 (1968)

    MATH  Google Scholar 

  18. Kupin, S., Peherstorfer, F., Volberg, A., Yuditskii, P.: Inverse scattering problem for a special class of canonical systems and non-linear Fourier integral part I: asymptotics of Eigen functions. In: Proceedings of Methods of Spectral Analysis in Mathematical Physics, Operator Theory Advances and Applications, vol. 186, pp. 285–323. Birkhäuser Verlag, Basel (2009)

  19. Kreĭn, M.G.: The basic propositions of the theory of \(\lambda \)-zones of stability of a canonical system of linear differential equations with periodic coefficients. In: Proceedings of In Memory of Aleksandr Aleksandrovič Andronov, pp. 413–498. Izdat. Akad. Nauk SSSR, Moscow (1955)

  20. Livšic, M.S.: Vortices of 2D systems. Op. Theory Adv. Appl. 123, 7–41 (2001)

    Google Scholar 

  21. Matthias, L., Harald, W.: A function space model for canonical systems with an inner singularity. Acta Sci. Math. (Szeged) 77(1–2), 101–165 (2011)

    MATH  MathSciNet  Google Scholar 

  22. Melnikov, A.: On a Theory of Vessels and the Inverse Scattering. http://arxiv.org/abs/1103.2392

  23. Melnikov, A.: On Construction of Solutions of the Evolutionary Non Linear Schrödinger Equation. http://arxiv.org/abs/1209.0179

  24. Melnikov, A.: Solution of the KdV Equation using Evolutionary Vessels. http://arxiv.org/abs/1110.3495

  25. Melnikov, A.: Finite dimensional Sturm Liouville vessels and their tau functions. IEOT 71(4), 455–490 (2011)

    MATH  Google Scholar 

  26. Melnikov, A.: Solution of the KdV equation on the line with analytic initial potential (2013). http://arxiv.org/abs/1303.5324

  27. Melnikov, A., Vinnikov, V.: Overdetermined Conservative 2D Systems, Invariant in One Direction and a Generalization of Potapov’s Theorem. http://arxiv.org/abs/0812.3970

  28. Sakhnovich, Alexander: Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems. Inverse Probl. 18(2), 331–348 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sakhnovich, A.L.: Discrete canonical system and non-abelian Toda lattice: Bäcklund–Darboux transformation, Weyl functions, and explicit solutions. Math. Nachr. 280(5–6), 631–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sakhnovich, A.L., Alexander, L., Karelin, Alexander, A., Seck-Tuoh-Mora, J., Perez-Lechuga, G., Gonzalez-Hernandez, M.: On explicit inversion of a subclass of operators with \(D\)-difference kernels and Weyl theory of the corresponding canonical systems. Positivity 14(3), 547–564 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Staffans, O.: Well-Posed Linear Systems. Encyclopedia of math, Cambridge (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Melnikov.

Additional information

Communicated by Irene Sabadini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A. Inverse Scattering of Canonical Systems and Their Evolution. Complex Anal. Oper. Theory 9, 793–819 (2015). https://doi.org/10.1007/s11785-014-0391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-014-0391-1

Keywords

Navigation