Skip to main content

Advertisement

Log in

Resource efficiency and environmental impact of fiber reinforced plastic processing technologies

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The process energy demand and the environmental indicators of two carbon fiber reinforced plastic process chains have been investigated. More precisely, the impact of different production set-ups for a standard textile preforming process using bindered non-crimp fabric (NCF) and a material efficient 2D dry-fiber-placement (DFP) process are analyzed. Both 2D preforms are activated by an infrared heating system and formed in a press. The resin-transfer-molding (RTM) technology is selected for subsequent processing. Within a defined process window, the main parameters influencing the process energy demand are identified. Varying all parameters, a reduction of 77% or an increase of 700% of the electric energy consumption compared to a reference production set-up is possible, mainly depending on part size, thickness, and curing time. For a reference production set-up, carbon fiber production dominates the environmental indicators in the product manufacturing phase with a share of around 72–80% of the total global warming potential (GWP). Thus, the reduction of production waste, energy efficient carbon fiber production, and the use of renewable energy resources are the key environmental improvement levers. For the production of small and thin parts in combination with long curing cycles, the influence of the processing technologies is more pronounced. Whereas for a reference production set-up, only 10% (NCF–RTM) and 15% (DFP–RTM) of the total GWP are caused by the processing technologies, a production set-up leading to a high process energy demand results in a share of 40% (NCF–RTM) and 49% (DFP–RTM), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hodzic A, Soutis C, Wilson C, Scaife R, Ridgway K (2010) Advanced composite manufacturing methods and life cycle analysis of emission savings. Seico 10 SAMPE EUROPE 31st conference proceedings

  2. Arikan E, Hohmann A, Kammerhofer P, Reppe M, Remer N, Drechsler K (2016) Energy efficiency and ecological benefits of a self-heated CFRP tool designed for resin transfer moulding, ECCM17 conference proceedings

  3. Duflou JR, de Moor J, Verpoest I, Dewulf W (2009) Environmental impact analysis of composite use in car manufacturing. CIRP Ann Manuf Technol 58:9–12. https://doi.org/10.1016/j.cirp.2009.03.077

    Article  Google Scholar 

  4. Das S (2011) Life cycle assessment of carbon fiber-reinforced polymer composites. Int J Life Cycle Assess 16:268–282. https://doi.org/10.1007/s11367-011-0264-z

    Article  Google Scholar 

  5. Scelsi L, Bonner M, Hodzic A, Soutis C, Wilson C, Scaife R, Ridgway K (2011) Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment. Exp Polym Lett 5(3):209–217. https://doi.org/10.3144/expresspolymlett.2011.20

    Article  Google Scholar 

  6. Witik RA, Payet J, Michaud V, Ludwig C, Månson JAE (2011) Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Compos A 42:1694–1709. https://doi.org/10.1016/j.compositesa.2011.07.024

    Article  Google Scholar 

  7. Anonymous (2012) Leichtbau in Mobilität und Fertigung—Ökologische Aspekte. e-mobil BW GmbH. http://www.e-mobilbw.de/de/service/publikationen. Accessed 05 July 2017

  8. Suzuki T, Takahashi J (2005) LCA of lightweight vehicles by using CFRP for mass-produced vehicles. https://www.researchgate.net/publication. Accessed 05 July 2017

  9. Wehner D, Hohmann A, Schwab B, Albrecht S, Ilg R, Sedlbauer KP, Leistner P, Drechsler K (2016) Effect of different technological and energy supply related measures on the primary energy demand of CFRP production. ECCM17 conference proceedings

  10. Flemming M, Ziegmann G, Roth S (2013) Faserverbundbauweisen: halbzeuge und bauweisen. Springer, Berlin

    Google Scholar 

  11. Schlimbach J (2015) Prozesskette zur ressourceneffizienten composite-herstellung für die e-mobilität—PRESCHE. VDI fortschritt-berichte reihe 5 Nr. 757. VDI Verlag, Düsseldorf

    Google Scholar 

  12. Lorincz J (2006) Composites fly lighter, stronger—tape laying and fibre placement systems automate composite structure production and reduce costs. http://advancedmanufacturing.org. Accessed 05 July 2017

  13. Schmitt S (2014) High performance composites manufacturing using advanced automated fiber placement (AFP), presentation on the symposium “A comprehensive approach to Carbon Composites Technology”. Symposium on the occasion of the 5 th anniversary of the Institute for Carbon Composites TU Munich

  14. Drechsler K, Chatzigeorgiou L, Niefnecker D, Hoffmann J, Schießler C, Schmitt S, Wirtz T (2014) Fiber Placement Technologien für komplexe Luftfahrtstrukturen—Von der anwendungsorientierten Forschung bis zum Technologietransfer im industriellen Umfeld. Presentation on the Deutscher Luftfahrt- und Raumfahrtkongress, Augsburg

  15. Hohmann A, Schwab B, Wehner D, Albrecht S, Ilg R, Schüppel D, von Reden T (2015) MAI Enviro—Vorstudie zur Lebenszyklusanalyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten. Fraunhofer Verlag, Stuttgart

    Google Scholar 

  16. International Organization for Standardization (ISO) (2006) Environmental management—life cycle assessment—principles and framework. International Standard ISO 14040 (ISO 14040:2006)

  17. Anonymous (2017) GaBi Professional database: Process data set–GLO: Druckluft 7 bar (mittlerer Stromverbrauch) ts; UUID of Process data set: 591678EA-DB78-427A-8B62-F0C2A329C5BB. http://www.gabi-software.com/support/gabi/gabi-database-2017-lci-documentation/professional-database-2017. Accessed 5 July 2017

  18. Anonymous (2017) GaBi Professional database: Process data set–EU-28: Polyacrylnitril Fasern (PAN) ts; UUID of Process data set: DB00901A-338F-11DD-BD11-0800200C9A66. http://www.gabi-software.com/support/gabi/gabi-database-2017-lci-documentation/professional-database-2017. Accessed 5 July 2017

  19. Kraus T, Kühnel M, Witten E (2015) Composites-marktbericht 2015. https://www.carbon-composites.eu/media. Accessed 12 Oct 2016

  20. Anonymous (2017) GaBi Professional database: Process data sets–US: Strom Mix ts; UUID of Process data set: {6B6FC994-8476-44A3-81CC-9829F2DFE992}. JP: Strom Mix ts; UUID 6D51656B-A12B-42DB-8B14-3E6E308B335B. CN: Strom Mix ts; UUID 124E9246-9E84-4352-86B5-C08837E8CF92. TW: Strom Mix ts; UUID 38304AC2-FDCB-4A0B-863E-8F18A98BD19F. KR: Strom Mix ts; UUID 275A3714-2F49-4612-A114-46A2BD4EBEB4. HU: Strom Mix ts; UUID C3DC3F1F-3641-4BFD-A04A-8E8432FC730E. DE: Strom Mix ts; UUID 48AB6F40-203B-4895-8742-9BDBEF55E494.FR: Strom Mix ts; UUID C8D7F695-1C5B-4F9A-8491-8C58C20C190F. GB: Strom Mix ts; UUID 00043BD2-4563-4D73-8DF8-B84B5D8902FC. http://www.gabi-software.com/support/gabi/gabi-database-2017-lci-documentation/professional-database-2017. Accessed 5 July 2017

  21. Anonymous (2017) GaBi Professional database: Process data set–RER: Epoxidharz (EP) PlasticsEurope; UUID of Process data set: 49268476-816A-4A86-ABB9-080E730BFF6F. http://www.gabi-software.com/support/gabi/gabi-database-2017-lci-documentation/professional-database-2017. Accessed 5 July 2017

  22. Anonymous (2017) GaBi Professional database: Process data set–DE: Strom Mix ts; UUID of Process data set: 48AB6F40-203B-4895-8742-9BDBEF55E494. http://www.gabi-software.com/support/gabi/gabi-database-2017-lci-documentation/professional-database-2017. Accessed 5 July 2017

  23. Anonymous (2017) GaBi Professional database: Process data set–DE: Wasser (entsalzt, deionisiert); UUID of Process data set: 300E0734-6B74-4225-A078-D64108783DA3. http://www.gabi-software.com/support/gabi/gabi-database-2017-lci-documentation/professional-database-2017. Accessed 5 July 2017

  24. Albrecht S, Hohmann A (2014) MAI Enviro—Vorstudie zur Lebenszyklusanalyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten für CFK-Strukturen. Presentation on CCeV AG Umweltaspekte

  25. Griffing E, Overcash M (2009) Carbon fiber from PAN—contents of factory gate ot factory gate life cycle inventory summary, chemical life cycle database. http://cratel.wichita.edu/gtglci/wp-content/uploads. Accessed 05 July 2017

  26. Patel M (1999) KEA für Produkte der organischen Chemie. Arbeitspapier im Rahmen des UBA-F&E-Vorhabens Nr. 104 01 123. http://docplayer.org/8600838-Kea-fuer-produkte-der-organischen-chemie.html. Accessed 05 July 2017

  27. Stiller H (1999) Material intensity of advanced composite materials. Wuppertal papers Nr. 90. https://epub.wupperinst.org/files/926/WP90.pdf. Accessed 05 July 2017

  28. Patel M (2003) Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry. Energy 28:721–740. https://doi.org/10.1016/S0360-5442(02)00166-4

    Article  Google Scholar 

  29. Rankine RK, Chick JP, Harrison GP (2006) Energy and carbon audit of a rooftop wind turbine. Proc Inst Mech Eng Part A. https://doi.org/10.1243/09576509JPE306

    Google Scholar 

  30. Pickering S (2010) Alignment of recycled carbon fibre for high volume fraction composites. Presentation on the global outlook for carbon fibre conference

  31. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  Google Scholar 

  32. Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fiber-reinforced composites. Compos A 40:1257–1265. https://doi.org/10.1016/j.compositesa.2009.05.020

    Article  Google Scholar 

  33. Suzuki T, Takahashi J (2005) Prediction of Energy Intensity of Carbon fiber reinforced plastics for mass-produced passenger cars. The ninth Japan international SAMPE symposium. https://www.researchgate.net/publication. Accessed 05 July 2017

  34. Suzuki T, Hukuyama T, Zushi H, Origuchi T, Takahashi J (2003) Evaluation of effects of lightening trucks on environment by LCA. Proceedings of EcoDesign2003. http://ieeexplore.ieee.org/document/1322689/. Accessed 05 July 2017

  35. Morgan P (2005) Carbon fibers and their composites. Taylor & Francis, London

    Book  Google Scholar 

  36. Drechsler K (2016) Flexible intelligente Bearbeitungstechnologien für komplexe Faserverbund-bauteile. Fraunhofer Verlag, Stuttgart

    Google Scholar 

Download references

Acknowledgements

This work is based on the results of the publicly funded project MAI Enviro 2.0 of the cluster of excellence MAI Carbon (funding code 03MAI38B). The Project is kindly funded by the German Federal Ministry for Education and Research (BMBF) and supervised by the Project management Jülich (PtJ). The authors of this publication are responsible for its contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohmann, A., Albrecht, S., Lindner, J.P. et al. Resource efficiency and environmental impact of fiber reinforced plastic processing technologies. Prod. Eng. Res. Devel. 12, 405–417 (2018). https://doi.org/10.1007/s11740-018-0802-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-018-0802-7

Keywords

Navigation