Skip to main content

Advertisement

Log in

Relevance of Iron Deposition in Deep Gray Matter Brain Structures to Cognitive and Motor Performance in Healthy Elderly Men and Women: Exploratory Findings

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Iron deposition increases in normal aging, has its greatest presence in structures of the extrapyramidal system, and may contribute to functional decline. MR imaging provides a method for indexing iron deposition in brain structures because of iron’s ferromagnetic properties, which interact with the MRI environment to cause signal intensity attenuation that is quantifiable by comparing images collected at 1.5 and 3.0 T. We tested functional correlates of an MR-based iron index in 10 healthy, elderly individuals previously reported to have a higher iron burden in the putamen and lower in the thalamus than young individuals. Lower scores on the Dementia Rating Scale and longer reaction times on a two-choice attention test correlated with higher iron estimates in the caudate nucleus and putamen; poorer Mini-Mental State Examination and Digit Symbol scores correlated with lower iron estimates in the thalamus. Further analyses based on multiple regression, which considered regional FDRI estimates and volume measures as predictors of performance, identified iron but not the sampled volume as the unique predictor in each case. These exploratory correlations suggest a substrate of performance degradation in aging and have implications for regional signal darkening in an array of MR-based imaging protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggleton, J. P., & Sahgal, A. (1993). The contribution of the anterior thalamic nuclei to anterograde amnesia. Neuropsychologia, 31(10), 1001–1019. doi:10.1016/0028-3932(93)90029-Y.

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis, G., Aravagiri, M., Oldendorf, W. H., Mintz, J., & Marder, S. R. (1993). Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magnetic Resonance in Medicine, 29, 459–464. doi:10.1002/mrm.1910290406.

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis, G., Mintz, J., Sultzer, D., Marx, P., Herzberg, J. S., Phelan, C. K., et al. (1994). In vivo MR evaluation of age-related increases in brain iron. AJNR. American Journal of Neuroradiology, 15(6), 1129–1138.

    PubMed  CAS  Google Scholar 

  • Bartzokis, G., Tishler, T. A., Lu, P. H., Villablanca, P., Altshuler, L. L., Carter, M., et al. (2007). Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiology of Aging, 28(3), 414–423. doi:10.1016/j.neurobiolaging.2006.02.005.

    Article  PubMed  CAS  Google Scholar 

  • Bizzi, A., Brooks, R. A., Brunetti, A., Hill, J. M., Alger, J. R., Miletich, R. S., et al. (1990). Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology, 177(1), 59–65.

    PubMed  CAS  Google Scholar 

  • Bizzi, A., Armstrong, M., Dietz, M., Fulmah, M., Frank, J., DeChiro, G., et al. (1992). Proton spectroscopic imaging of frontal and parietal lobes in normal human brain. Proceedings of Annual Meeting of Society of Magnetic Resonance in Medicine, 1906.

  • Brass, S. D., Chen, N. K., Mulkern, R. V., & Bakshi, R. (2006). Magnetic resonance imaging of iron deposition in neurological disorders. Topics in Magnetic Resonance Imaging, 17(1), 31–40. doi:10.1097/01.rmr.0000245459.82782.e4.

    Article  PubMed  Google Scholar 

  • Cahn, D. A., Sullivan, E. V., Shear, P. K., Heit, G., Lim, K. O., Marsh, L., et al. (1998). Neuropsychological and motor functioning following unilateral anatomically-guided posterior ventral pallidotomy: preoperative performance and three-month follow-up. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 11(3), 136–145.

    PubMed  CAS  Google Scholar 

  • Cooper, J. A., Sagar, H. J., Jordan, N., Harvey, N., & Sullivan, E. V. (1991). Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain, 114, 2095–2122. doi:10.1093/brain/114.5.2095.

    Article  PubMed  Google Scholar 

  • Corkin, S., Growdon, J. H., Sullivan, E. V., Nissen, M. J., & Huff, F. J. (1986). Assessing treatment effects from a neuropsychological perspective. In L. Poon (Ed.), Handbook of clinical memory assessment in older adults (pp. 156–167). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • DeCarli, C., Massaro, J., Harvey, D., Hald, J., Tullberg, M., Au, R., et al. (2005). Measures of brain morphology and infarction in the Framingham heart study: establishing what is normal. Neurobiology of Aging, 26(4), 491–510. doi:10.1016/j.neurobiolaging.2004.05.004.

    Article  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. doi:10.1016/0022-3956(75)90026-6.

    Article  PubMed  CAS  Google Scholar 

  • Glover, G. H., & Lai, S. (1998). Self-navigated spiral fMRI: interleaved versus single-shot. Magnetic Resonance in Medicine, 39, 361–368. doi:10.1002/mrm.1910390305.

    Article  PubMed  CAS  Google Scholar 

  • Gomori, J. M., & Grossman, R. I. (1993). The relation between regional brain iron and T2 shortening. AJNR. American Journal of Neuroradiology, 14, 1049–1050.

    PubMed  CAS  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult brains. NeuroImage, 14, 21–36. doi:10.1006/nimg.2001.0786.

    Article  PubMed  CAS  Google Scholar 

  • Haacke, E. M., Cheng, N. Y., House, M. J., Liu, Q., Neelavalli, J., Ogg, R. J., et al. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23, 1–25. doi:10.1016/j.mri.2004.10.001.

    Article  PubMed  CAS  Google Scholar 

  • Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3(1), 41–51. doi:10.1111/j.1471-4159.1958.tb12607.x.

    Article  PubMed  CAS  Google Scholar 

  • Harding, A., Halliday, G., Caine, D., & Kril, J. (2000). Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain, 123(Pt 1), 141–154. doi:10.1093/brain/123.1.141.

    Article  PubMed  Google Scholar 

  • Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., et al. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22(4), 581–594. doi:10.1016/S0197-4580(01)00217-2.

    Article  PubMed  CAS  Google Scholar 

  • Killiany, R. J. (2006). Why is the study of iron important for magnetic resonance imaging? Topics in Magnetic Resonance Imaging, 17, 1–3. doi:10.1097/RMR.0b013e31802c14e6.

    Article  PubMed  Google Scholar 

  • Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Majumdar, S., Zoghbi, S., Pope, C. F., & Gore, J. C. (1989). A quantitative study of relaxation rate enhancement produced by iron oxide particles in polyacrylamide gels and tissue. Magnetic Resonance in Medicine, 9(2), 185–202. doi:10.1002/mrm.1910090205.

    Article  PubMed  CAS  Google Scholar 

  • Mattis, S. (1988). Dementia Rating Scale (DRS) professional manual. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Pascual-Leone, A., Grafman, J., Clark, K., Stewart, M., Massaquoi, S., Lou, J. S., et al. (1993). Procedural learning in Parkinson’s disease and cerebellar degeneration. Annals of Neurology, 34(4), 594–602. doi:10.1002/ana.410340414.

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–887.

    PubMed  CAS  Google Scholar 

  • Pfefferbaum, A., Adalsteinsson, E., Rohlfing, T., & Sullivan, E. V. (2008). Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiology of Aging, doi:10.1016/j.neurobiolaging.2008.04.013.

  • Pfeuffer, J., Van de Moortele, P. F., Ugurbil, K., Hu, X., & Glover, G. H. (2002). Correction of physiologically induced global off-esonance effects in dynamic echo-planar and spiral functional imaging. Magnetic Resonance in Medicine, 47(2), 344–353. doi:10.1002/mrm.10065.

    Article  PubMed  Google Scholar 

  • Pujol, J., Junque, C., Vendrell, P., Grau, J. M., Marti-Vilalta, J. L., Olive, C., et al. (1992). Biological significance of iron-related magnetic resonance imaging changes in the brain. Archives of Neurology, 49(7), 711–717.

    PubMed  CAS  Google Scholar 

  • Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30, 730–748. doi:10.1016/j.neubiorev.2006.07.001.

    Article  PubMed  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences, and modifiers. Cerebral Cortex (New York, N.Y.), 15, 1676–1689. doi:10.1093/cercor/bhi044.

    Article  Google Scholar 

  • Raz, N., Rodrigue, K. M., & Haacke, E. M. (2007a). Brain aging and its modifiers: insights from in vivo neuromorphometry and susceptibility weighted imaging. Annals of the New York Academy of Sciences, 1097, 84–93. doi:10.1196/annals.1379.018.

    Article  PubMed  Google Scholar 

  • Raz, N., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2007b). Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology, 21(2), 149–157. doi:10.1037/0894-4105.21.2.149.

    Article  PubMed  Google Scholar 

  • Rohlfing, T., & Maurer, C. R. (2003). Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine, 7(1), 16–25. doi:10.1109/TITB.2003.808506.

    Article  PubMed  Google Scholar 

  • Rohlfing, T., Zahr, N. M., Sullivan, E. V., & Pfefferbaum, A. (2008). The SRI24 multi-channel brain atlas: construction and applications. In J. M. Reinhardt, & J. P. W. Pluim (Eds.), Medical imaging 2008: image processing, vol. 6914 of Proceedings of SPIE. Bellingham, WA, EID 691409 doi:10.1117/12.770441.

  • Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1988). Procedural learning and neostriatal dysfunction in man. Brain, 111, 941–959. doi:10.1093/brain/111.4.941.

    Article  PubMed  Google Scholar 

  • Sassoon, S. A., Fama, R., Rosenbloom, M. J., O’Reilly, A., Pfefferbaum, A., & Sullivan, E. V. (2007). Component cognitive and motor processes of the Digit Symbol Test: differential deficits in alcoholism, HIV infection and their comorbidity. Alcoholism, Clinical and Experimental Research, 31, 1315–1324. doi:10.1111/j.1530-0277.2007.00426.x.

    Article  PubMed  Google Scholar 

  • Sullivan, E. V., & Pfefferbaum, A. (2007). Neuroradiological characterization of normal adult aging. The British Journal of Radiology, 60, S99–S108. doi:10.1259/bjr/22893432.

    Article  Google Scholar 

  • Thomas, L. O., Boyko, O. B., Anthony, D. C., & Burger, P. C. (1993). MR detection of brain iron. AJNR. American Journal of Neuroradiology, 14(5), 1043–1048.

    PubMed  CAS  Google Scholar 

  • Wechsler, D. (1981). Wechsler adult intelligence scale—revised. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews. Neuroscience, 7(6), 464–476. doi:10.1038/nrn1919.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. National Institutes of Health grants AG17919 and AA05965.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith V. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, E.V., Adalsteinsson, E., Rohlfing, T. et al. Relevance of Iron Deposition in Deep Gray Matter Brain Structures to Cognitive and Motor Performance in Healthy Elderly Men and Women: Exploratory Findings. Brain Imaging and Behavior 3, 167–175 (2009). https://doi.org/10.1007/s11682-008-9059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-008-9059-7

Keywords

Navigation