Skip to main content
Log in

Properties of the Mo Back Contact for the Formation of a Thin-Film Photovoltaic Absorber

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A Taguchi experimental design was used to find which deposition parameter has the most dominant effect on the electrical resistivity of molybdenum (Mo) films. Based on the most important parameter, the Mo films were further characterized by structural, electrical, and adhesive methods. Then, a copper indium gallium selenide (CIGS) thin film was fabricated by a two-stage process on the obtained Mo layer. The results show that working pressure had a dominant effect on electrical resistivity. The Mo films deposited at 1 mTorr and 2 mTorr exhibited compressive strain and dense polycrystalline microstructure, whereas those deposited at 3 mTorr and 4 mTorr exhibited tensile strain and an elongated grain with open boundaries. A Mo film with open porous structure, tensile strain, and lower resistivity was suitable for the formation of CIGS films. After selenization at 560°C, a single-phase chalcopyrite CIGS film with a layer of MoSe2 at the Mo/CIGS interface was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Rockett and R.M. Birkmire, J. Appl. Phys. 70, R81 (1991).

    Article  CAS  Google Scholar 

  2. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovolt. Res. Appl. 16, 235 (2008).

    Article  CAS  Google Scholar 

  3. S.R. Dhage, H.S. Kim, and H.T. Hahn, J. Electron. Mater. 40, 122 (2011).

    Article  CAS  Google Scholar 

  4. M.A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt. Res. Appl. 15, 425 (2007).

    Article  CAS  Google Scholar 

  5. R. Caballero, C. Guillén, M.T. Gutiérrez, and C.A. Kaufmann, Prog. Photovolt. Res. Appl. 14, 145 (2006).

    Article  CAS  Google Scholar 

  6. M.A. Martínez and C. Guillén, J. Mater. Process. Technol. 143–144, 326 (2003).

    Article  Google Scholar 

  7. Y. Kamikawa-Shimizu, S. Shimada, M. Watanabe, A. Yamada, K. Sakurai, S. Ishizuka, H. Komaki, K. Matsubara, H. Shibata, H. Tampo, K. Maejima, and S. Niki, Phys. Status Solidi (a) 206, 1063 (2009).

    Article  CAS  Google Scholar 

  8. F. Couzinié-Devy, N. Barreau, and J. Kessler, Prog. Photovolt. Res. Appl. 19, 527 (2011).

    Article  Google Scholar 

  9. M.A. Martinez and C. Guillén, Surf. Coat. Technol. 110, 62 (1998).

    Article  CAS  Google Scholar 

  10. K. Orgassa, H.W. Schock, and J.H. Werner, Thin Solid Films 431/432, 387 (2003).

    Article  Google Scholar 

  11. T. Yamaguchi and R. Miyagaa, Jpn. J. Appl. Phys. 30, 2069 (1991).

    Article  CAS  Google Scholar 

  12. Z.-H. Li, E.-S. Cho, and S.J. Kwon, Appl. Surf. Sci. 257, 9682 (2011).

    Article  CAS  Google Scholar 

  13. E. Kilickap, Expert Syst. Appl. 37, 6116 (2010).

    Article  Google Scholar 

  14. P.J. Ross, Taguchi Techniques for Quality Engineering (New York: McGraw-Hill, 1988).

    Google Scholar 

  15. Y.Y.M. Chiang and H.H. Hsieh, Comput. Ind. Eng. 56, 648 (2009).

    Article  Google Scholar 

  16. L.I. Maissel and R. Glang, eds., Handbook of Thin Film Technology (New York: McGraw-Hill, 1983).

    Google Scholar 

  17. M. Jubault, L. Ribeaucourt, E. Chassaing, G. Renou, D. Lincot, and F. Donsanti, Sol. Energy Mater. Sol. Cells 95, S26 (2011).

    Article  CAS  Google Scholar 

  18. G. Zoppi, N.S. Beattie, J.D. Major, R.W. Miles, and I. Forbes, J. Mater. Sci. 46, 4913 (2011).

    Article  CAS  Google Scholar 

  19. J.H. Yoon, S. Cho, W.M. Kim, J.K. Park, Y.J. Baik, T.S. Lee, T.Y. Seong, and J.H. Jeong, Sol. Energy Mater. Sol. Cells 95, 2959 (2011).

    Article  CAS  Google Scholar 

  20. H. Park, S.C. Kim, S.H. Lee, J. Koo, S.H. Lee, C.W. Jeon, S. Yoon, and W.K. Kim, Thin Solid Films 519, 7245 (2011).

    Article  CAS  Google Scholar 

  21. M. Bodegård, K. Granath, and L. Stolt, Solar Energy Mater. Solar Cells 58, 199 (1999).

    Article  Google Scholar 

  22. D.W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, J.T. Brain, and J.E. Fulghum, J. Vac. Sci. Technol. A 15, 3044 (1997).

    Article  CAS  Google Scholar 

  23. K. Orgassa, Coherent optical analysis of the ZnO/CdS/Cu(In,Ga)Se2 thin film solar cell, PhD thesis, University of Stuttgart (2004).

  24. R. Coehoorn, C. Haas, and R.A. de Groot, Phys. Rev. 35, 6203 (1987).

    Article  CAS  Google Scholar 

  25. T. Wada, N. Kohara, S. Nishiwaki, and T. Negami, Thin Solid Films 387, 118 (2001).

    Article  CAS  Google Scholar 

  26. J. Álvarez-García, A. Pérez-Rodríguez, A. Romano- Rodríguez, and J.R. Morante, J. Vac. Sci. Technol. A 19, 232 (2001).

    Article  Google Scholar 

  27. A. Mallouky and J.C. Bernède, Thin Solid Films 158, 285 (1988).

    Article  CAS  Google Scholar 

  28. D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau, A.N. Tiwari, and M. Dobeli, Thin Solid Films 480–481, 433 (2005).

    Article  Google Scholar 

  29. S.A. Dinca, E.A. Schiff, B. Egaas, R. Noufi, D.L. Young, and W.N. Shafarman, Phys. Rev. B 80, 2352011 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.C. Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Hsu, C., Shiou, F. et al. Properties of the Mo Back Contact for the Formation of a Thin-Film Photovoltaic Absorber. J. Electron. Mater. 42, 71–77 (2013). https://doi.org/10.1007/s11664-012-2311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2311-3

Keywords

Navigation